IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i4ne529.html
   My bibliography  Save this article

Struvite in circular economy: Production techniques, emerging applications and market opportunities

Author

Listed:
  • Sivaraman Chandrasekaran
  • Alisha Zaffar
  • Paramasivan Balasubramanian

Abstract

Struvite precipitation is an efficient approach to recover phosphorus and ammonium from wastewater to alleviate many operational as well as environmental issues. The sparingly soluble nature of struvite in water makes it a potential slow‐release fertilizer whose adequacy has been investigated in various soil‐based cultivation. However, struvite has diverse applications other than field usage which are yet to be explored. The review highlights the usage of struvite as a fertilizer in soil along with its other applications as a nutrient supplier in hydroponic systems, fire retardants, and sorbent for the adsorption of heavy metals, dye, and gases. The research gaps between the lab and the application of the struvite products in the market for its proper utilization have also been reported. Thus, struvite produced from wastewater can be a promising green chemistry that could replace many costly, synthetic, and harmful products, while conserving phosphorous resource at the same time. This article is categorized under: Climate and Environment > Circular Economy Emerging Technologies > Materials Sustainable Development > Goals

Suggested Citation

  • Sivaraman Chandrasekaran & Alisha Zaffar & Paramasivan Balasubramanian, 2024. "Struvite in circular economy: Production techniques, emerging applications and market opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:4:n:e529
    DOI: 10.1002/wene.529
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.529
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mijung Kim & Soomin Shim & Arif Reza & Seungsoo Kim & Seunggun Won & Baedong Jung & Jinsoo Kim & Changsix Ra, 2019. "Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed," Agriculture, MDPI, vol. 9(10), pages 1-11, October.
    2. Giorgio Provolo & Giulia Manuli & Alberto Finzi & Giorgio Lucchini & Elisabetta Riva & Gian Attilio Sacchi, 2018. "Effect of Pig and Cattle Slurry Application on Heavy Metal Composition of Maize Grown on Different Soils," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    3. Christophe El-Nakhel & Danny Geelen & Jolien De Paepe & Peter Clauwaert & Stefania De Pascale & Youssef Rouphael, 2021. "An Appraisal of Urine Derivatives Integrated in the Nitrogen and Phosphorus Inputs of a Lettuce Soilless Cultivation System," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    4. Hong-Duck Ryu & Do Young Lim & Sun-Jung Kim & Un-Il Baek & Eu Gene Chung & Kyunghyun Kim & Jae Kwan Lee, 2020. "Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqiang Wu & Chenyan Sha & Min Wang & Chunmei Ye & Peng Li & Shenfa Huang, 2021. "Effect of Organic Fertilizer on Soil Bacteria in Maize Fields," Land, MDPI, vol. 10(3), pages 1-14, March.
    2. Thirze Hermans & Nienke Beintema & Carlos Francisco Brazão Vieira Alho & Mark van der Poel, 2025. "Experiences in Assessing the Impact of Circular Economy Interventions in Agrifood Systems—A Review," Sustainability, MDPI, vol. 17(4), pages 1-22, February.
    3. Jonathan Ries & Zhihao Chen & Yujin Park, 2023. "Potential Applications of Food-Waste-Based Anaerobic Digestate for Sustainable Crop Production Practice," Sustainability, MDPI, vol. 15(11), pages 1-12, May.
    4. Alberto Finzi & Gabriele Mattachini & Daniela Lovarelli & Elisabetta Riva & Giorgio Provolo, 2020. "Technical, Economic, and Environmental Assessment of a Collective Integrated Treatment System for Energy Recovery and Nutrient Removal from Livestock Manure," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    5. Augusto Bianchini & Jessica Rossi, 2020. "An Integrated Industry-Based Methodology to Unlock Full-Scale Implementation of Phosphorus Recovery Technology," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    6. Leidy Rendón-Castrillón & Margarita Ramírez-Carmona & Carlos Ocampo-López & Luis Gómez-Arroyave, 2023. "Bioleaching Techniques for Sustainable Recovery of Metals from Solid Matrices," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    7. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    8. Mateusz Sydow & Łukasz Chrzanowski & Alexandra Leclerc & Alexis Laurent & Mikołaj Owsianiak, 2018. "Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    9. Grace L. Douglas & Raymond M. Wheeler & Ralph F. Fritsche, 2021. "Sustaining Astronauts: Resource Limitations, Technology Needs, and Parallels between Spaceflight Food Systems and those on Earth," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    10. Işık Kabdaşlı & Alessio Siciliano & Carlo Limonti & Olcay Tünay, 2022. "Is K-Struvite Precipitation a Plausible Nutrient Recovery Method from Potassium-Containing Wastes?—A Review," Sustainability, MDPI, vol. 14(18), pages 1-35, September.
    11. Mareike Mauerer & Thorsten Rocksch & Dennis Dannehl & Ingo Schuch & Inga Mewis & Nadja Förster & Christian Ulrichs & Uwe Schmidt, 2023. "Replacing Mineral Fertilizer with Nitrified Human Urine in Hydroponic Lettuce ( Lactuca sativa L.) Production," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    12. Yongxia Meng & Peng Li & Lie Xiao & Rui Wang & Shutong Yang & Jiangxue Han & Bingze Hu, 2022. "Heavy Metal Content and Pollution Assessment in Typical Check Dam Sediment in a Watershed of Loess Plateau, China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:4:n:e529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.