IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v64y2010i2p133-156.html
   My bibliography  Save this article

Semiparametric regression models and sensitivity analysis of longitudinal data with non‐random dropouts

Author

Listed:
  • David Todem
  • KyungMann Kim
  • Jason Fine
  • Limin Peng

Abstract

We propose a family of regression models to adjust for non‐random dropouts in the analysis of longitudinal outcomes with fully observed covariates. The approach conceptually focuses on generalized linear models with random effects. A novel formulation of a shared random effects model is presented and shown to provide a dropout selection parameter with a meaningful interpretation. The proposed semiparametric and parametric models are made part of a sensitivity analysis to delineate the range of inferences consistent with observed data. Concerns about model identifiability are addressed by fixing some model parameters to construct functional estimators that are used as the basis of a global sensitivity test for parameter contrasts. Our simulation studies demonstrate a large reduction of bias for the semiparametric model relative to the parametric model at times where the dropout rate is high or the dropout model is mis‐specified. The methodology's practical utility is illustrated in a data analysis.

Suggested Citation

  • David Todem & KyungMann Kim & Jason Fine & Limin Peng, 2010. "Semiparametric regression models and sensitivity analysis of longitudinal data with non‐random dropouts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 133-156, May.
  • Handle: RePEc:bla:stanee:v:64:y:2010:i:2:p:133-156
    DOI: 10.1111/j.1467-9574.2009.00435.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2009.00435.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2009.00435.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huageng Tao & Mari Palta & Brian S. Yandell & Michael A. Newton, 1999. "An Estimation Method for the Semiparametric Mixed Effects Model," Biometrics, The International Biometric Society, vol. 55(1), pages 102-110, March.
    2. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    3. Caroline Beunckens & Geert Molenberghs & Geert Verbeke & Craig Mallinckrodt, 2008. "A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data," Biometrics, The International Biometric Society, vol. 64(1), pages 96-105, March.
    4. Paul S. Albert & Dean A. Follmann, 2000. "Modeling Repeated Count Data Subject to Informative Dropout," Biometrics, The International Biometric Society, vol. 56(3), pages 667-677, September.
    5. Rotnitzky Andrea & Daniel Scharfstein & Ting‐Li Su & James Robins, 2001. "Methods for Conducting Sensitivity Analysis of Trials with Potentially Nonignorable Competing Causes of Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 103-113, March.
    6. John Copas & Shinto Eguchi, 2001. "Local sensitivity approximations for selectivity bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 871-895.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oludare Samuel Ariyo & Matthew Adekunle Adeleke, 2022. "Simultaneous Bayesian modelling of skew-normal longitudinal measurements with non-ignorable dropout," Computational Statistics, Springer, vol. 37(1), pages 303-325, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Todem & J. Fine & L. Peng, 2010. "A Global Sensitivity Test for Evaluating Statistical Hypotheses with Nonidentifiable Models," Biometrics, The International Biometric Society, vol. 66(2), pages 558-566, June.
    2. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    3. Xie, Hui, 2012. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1287-1300.
    4. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    5. Ying Yuan & Roderick J. A. Little, 2009. "Meta-Analysis of Studies with Missing Data," Biometrics, The International Biometric Society, vol. 65(2), pages 487-496, June.
    6. Díaz Iván & van der Laan Mark J., 2013. "Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 149-160, November.
    7. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    8. Joseph W. Hogan & Xihong Lin & Benjamin Herman, 2004. "Mixtures of Varying Coefficient Models for Longitudinal Data with Discrete or Continuous Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 60(4), pages 854-864, December.
    9. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    10. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    11. Samaneh Mahabadi & Mojtaba Ganjali, 2015. "A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 397-417, December.
    12. Peter Hall & Tapabrata Maiti, 2009. "Deconvolution methods for non‐parametric inference in two‐level mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 703-718, June.
    13. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    14. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    15. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    16. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    17. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    18. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    19. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    20. Yucong Lin & Jinhua Su & Yang Liu & Jue Hou & Feifei Wang, 2024. "Implicit profiling estimation for semiparametric models with bundled parameters," Statistical Papers, Springer, vol. 65(5), pages 3203-3234, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:64:y:2010:i:2:p:133-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.