IDEAS home Printed from https://ideas.repec.org/a/bla/srbeha/v37y2020i6p880-885.html
   My bibliography  Save this article

Navigating through the unknown: How conjoint analysis reduces uncertainty in energy consumer modelling

Author

Listed:
  • Merla Kubli

Abstract

No abstract is available for this item.

Suggested Citation

  • Merla Kubli, 2020. "Navigating through the unknown: How conjoint analysis reduces uncertainty in energy consumer modelling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 880-885, November.
  • Handle: RePEc:bla:srbeha:v:37:y:2020:i:6:p:880-885
    DOI: 10.1002/sres.2756
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sres.2756
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sres.2756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    2. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
    3. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    4. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    5. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    6. Veldman, Else & Gibescu, Madeleine & Slootweg, Han (J.G.) & Kling, Wil L., 2013. "Scenario-based modelling of future residential electricity demands and assessing their impact on distribution grids," Energy Policy, Elsevier, vol. 56(C), pages 233-247.
    7. John Sterman, 2018. "System dynamics at sixty: the path forward," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 5-47, January.
    8. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    9. Birgit Kopainsky & Katharine Tröger & Sebastian Derwisch & Silvia Ulli‐Beer, 2012. "Designing Sustainable Food Security Policies in Sub‐Saharan African Countries: How Social Dynamics Over‐Ride Utility Evaluations for Good and Bad," Systems Research and Behavioral Science, Wiley Blackwell, vol. 29(6), pages 575-589, November.
    10. Kubli, Merla, 2018. "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, Elsevier, vol. 114(C), pages 173-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kubli, Merla & Puranik, Sanket, 2023. "A typology of business models for energy communities: Current and emerging design options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Kubli, Merla & Canzi, Patrizio, 2021. "Business strategies for flexibility aggregators to steer clear of being “too small to bid”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubli, Merla & Canzi, Patrizio, 2021. "Business strategies for flexibility aggregators to steer clear of being “too small to bid”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Mashlakov, Aleksei & Pournaras, Evangelos & Nardelli, Pedro H.J. & Honkapuro, Samuli, 2021. "Decentralized cooperative scheduling of prosumer flexibility under forecast uncertainties," Applied Energy, Elsevier, vol. 290(C).
    3. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    4. Martina Arosio & Davide Falabretti, 2023. "DER Participation in Ancillary Services Market: An Analysis of Current Trends and Future Opportunities," Energies, MDPI, vol. 16(5), pages 1-21, March.
    5. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    7. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    9. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    10. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    11. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    12. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    13. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    14. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    15. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    16. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    17. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    18. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    19. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    20. Mays, Jacob, 2021. "Missing incentives for flexibility in wholesale electricity markets," Energy Policy, Elsevier, vol. 149(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:srbeha:v:37:y:2020:i:6:p:880-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/1092-7026 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.