IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i4p1707-1729.html
   My bibliography  Save this article

Structure learning for continuous time Bayesian networks via penalized likelihood

Author

Listed:
  • Tomasz Ca̧kała
  • Błażej Miasojedow
  • Wojciech Rejchel
  • Maryia Shpak

Abstract

Continuous time Bayesian networks (CTBNs) represent a class of stochastic processes, which can be used to model complex phenomena, for instance, they can describe interactions occurring in living processes, social science models or medicine. The literature on this topic is usually focused on a case when a dependence structure of a system is known and we are to determine conditional transition intensities (parameters of a network). In the paper, we study a structure learning problem, which is a more challenging task and the existing research on this topic is limited. The approach, which we propose, is based on a penalized likelihood method. We prove that our algorithm, under mild regularity conditions, recognizes a dependence structure of a graph with high probability. We also investigate properties of the procedure in numerical studies.

Suggested Citation

  • Tomasz Ca̧kała & Błażej Miasojedow & Wojciech Rejchel & Maryia Shpak, 2024. "Structure learning for continuous time Bayesian networks via penalized likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1707-1729, December.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:4:p:1707-1729
    DOI: 10.1111/sjos.12747
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12747
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Fearnhead & Chris Sherlock, 2006. "An exact Gibbs sampler for the Markov‐modulated Poisson process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 767-784, November.
    2. Piotr Pokarowski & Wojciech Rejchel & Agnieszka Sołtys & Michał Frej & Jan Mielniczuk, 2022. "Improving Lasso for model selection and prediction," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 831-863, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miasojedow, Błażej & Niemiro, Wojciech, 2016. "Geometric ergodicity of Rao and Teh’s algorithm for homogeneous Markov jump processes," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 1-6.
    2. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    3. Lu Shaochuan, 2020. "Bayesian multiple changepoints detection for Markov jump processes," Computational Statistics, Springer, vol. 35(3), pages 1501-1523, September.
    4. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Ramírez-Cobo, Pepa, 2017. "Findings about the two-state BMMPP for modeling point processes in reliability and queueing systems," DES - Working Papers. Statistics and Econometrics. WS 24622, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Yera, Yoel G. & Lillo, Rosa E. & Nielsen, Bo F. & Ramírez-Cobo, Pepa & Ruggeri, Fabrizio, 2021. "A bivariate two-state Markov modulated Poisson process for failure modeling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Chris Sherlock & Tatiana Xifara & Sandra Telfer & Mike Begon, 2013. "A coupled hidden Markov model for disease interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 609-627, August.
    8. Landon, Joshua & Özekici, Süleyman & Soyer, Refik, 2013. "A Markov modulated Poisson model for software reliability," European Journal of Operational Research, Elsevier, vol. 229(2), pages 404-410.
    9. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    10. Pepa Ramírez-Cobo & Rosa Lillo & Michael Wiper, 2014. "Identifiability of the MAP 2 /G/1 queueing system," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 274-289, April.
    11. Jane M. Lange & Rebecca A. Hubbard & Lurdes Y. T. Inoue & Vladimir N. Minin, 2015. "A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data," Biometrics, The International Biometric Society, vol. 71(1), pages 90-101, March.
    12. Ramírez Cobo, Josefa, 2009. "Non-identifiability of the two state Markovian Arrival process," DES - Working Papers. Statistics and Econometrics. WS ws097121, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:4:p:1707-1729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.