IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1090-1113.html
   My bibliography  Save this article

Computationally efficient familywise error rate control in genome‐wide association studies using score tests for generalized linear models

Author

Listed:
  • Kari Krizak Halle
  • Øyvind Bakke
  • Srdjan Djurovic
  • Anja Bye
  • Einar Ryeng
  • Ulrik Wisløff
  • Ole A. Andreassen
  • Mette Langaas

Abstract

In genetic association studies, detecting phenotype–genotype association is a primary goal. We assume that the relationship between the data—phenotype, genetic markers and environmental covariates—can be modeled by a generalized linear model. The number of markers is allowed to be far greater than the number of individuals of the study. A multivariate score statistic is used to test each marker for association with a phenotype. We assume that the test statistics asymptotically follow a multivariate normal distribution under the complete null hypothesis of no phenotype–genotype association. We present the familywise error rate order k approximation method to find a local significance level (alternatively, an adjusted p‐value) for each test such that the familywise error rate is controlled. The special case k=1 gives the Šidák method. As a by‐product, an effective number of independent tests can be defined. Furthermore, if environmental covariates and genetic markers are uncorrelated, or no environmental covariates are present, we show that covariances between score statistics depend on genetic markers alone. This not only leads to more efficient calculations but also to a local significance level that is determined only by the collection of markers used, independent of the phenotypes and environmental covariates of the experiment at hand.

Suggested Citation

  • Kari Krizak Halle & Øyvind Bakke & Srdjan Djurovic & Anja Bye & Einar Ryeng & Ulrik Wisløff & Ole A. Andreassen & Mette Langaas, 2020. "Computationally efficient familywise error rate control in genome‐wide association studies using score tests for generalized linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1090-1113, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1090-1113
    DOI: 10.1111/sjos.12451
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12451
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    2. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Oct 2024.
    4. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    5. Timothy J. Halliday & Bhashkar Mazumder & Ashley Wong, 2020. "The intergenerational transmission of health in the United States: A latent variables analysis," Health Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 367-381, March.
    6. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    7. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Paper series 20-09, Rimini Centre for Economic Analysis.
    8. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    9. Lhuissier, Stéphane & Ortmans, Aymeric & Tripier, Fabien, 2022. "The Risk of Inflation Dispersion in the Euro Area," CEPREMAP Working Papers (Docweb) 2212, CEPREMAP.
    10. Isaiah Andrews & Jonathan Roth & Ariel Pakes, 2023. "Inference for Linear Conditional Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(6), pages 2763-2791.
    11. Michael Lebacher & Paul W. Thurner & Göran Kauermann, 2021. "Censored regression for modelling small arms trade volumes and its ‘Forensic’ use for exploring unreported trades," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 909-933, August.
    12. Butyn, Emerson & Karas, Elizabeth W. & de Oliveira, Welington, 2022. "A derivative-free trust-region algorithm with copula-based models for probability maximization problems," European Journal of Operational Research, Elsevier, vol. 298(1), pages 59-75.
    13. Tapati Basak & Kazuhisa Nagashima & Satoshi Kajimoto & Takahisa Kawaguchi & Yasuharu Tabara & Fumihiko Matsuda & Ryo Yamada, 2020. "A Geometry-Based Multiple Testing Correction for Contingency Tables by Truncated Normal Distribution," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 63-77, April.
    14. François Bachoc & Céline Helbert & Victor Picheny, 2020. "Gaussian process optimization with failures: classification and convergence proof," Journal of Global Optimization, Springer, vol. 78(3), pages 483-506, November.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021. "Forecasting with Shadow-Rate VARs," Working Papers 21-09, Federal Reserve Bank of Cleveland.
    16. Haehl, Christian & Spinler, Stefan, 2020. "Technology Choice under Emission Regulation Uncertainty in International Container Shipping," European Journal of Operational Research, Elsevier, vol. 284(1), pages 383-396.
    17. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    18. Lars Nørvang Andersen & Patrick J. Laub & Leonardo Rojas-Nandayapa, 2018. "Efficient Simulation for Dependent Rare Events with Applications to Extremes," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 385-409, March.
    19. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    20. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1090-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.