IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i3p638-661.html
   My bibliography  Save this article

Stochastic functional estimates in longitudinal models with interval‐censored anchoring events

Author

Listed:
  • Chenghao Chu
  • Ying Zhang
  • Wanzhu Tu

Abstract

Timelines of longitudinal studies are often anchored by specific events. In the absence of the fully observed anchoring event times, the study timeline becomes undefined, and the traditional longitudinal analysis loses its temporal reference. In this paper, we considered an analytical situation where the anchoring events are interval censored. We demonstrated that by expressing the regression parameter estimators as stochastic functionals of a plug‐in estimate of the unknown anchoring event time distribution, the standard longitudinal models could be extended to accommodate the situation of less well‐defined timelines. We showed that for a broad class of longitudinal models, the functional parameter estimates are consistent and asymptotically normally distributed with a n convergence rate under mild regularity conditions. Applying the developed theory to linear mixed‐effects models, we further proposed a hybrid computational procedure that combines the strengths of the Fisher's scoring method and the expectation‐expectation (EM) algorithm for model parameter estimation. We conducted a simulation study to validate the asymptotic properties and to assess the finite sample performance of the proposed method. A real data example was used to illustrate the proposed method. The method fills in a gap in the existing longitudinal analysis methodology for data with less well‐defined timelines.

Suggested Citation

  • Chenghao Chu & Ying Zhang & Wanzhu Tu, 2020. "Stochastic functional estimates in longitudinal models with interval‐censored anchoring events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 638-661, September.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:638-661
    DOI: 10.1111/sjos.12419
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12419
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.
    2. Ying Zhang & Gang Cheng & Wanzhu Tu, 2016. "Robust nonparametric estimation of monotone regression functions with interval-censored observations," Biometrics, The International Biometric Society, vol. 72(3), pages 720-730, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gebrenegus Ghilagaber & Parfait Munezero, 2020. "Bayesian change-point modelling of the effects of 3-points-for-a-win rule in football," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(2), pages 248-264, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:638-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.