IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i3p639-655.html
   My bibliography  Save this article

Sparse Markov Chains for Sequence Data

Author

Listed:
  • Väinö Jääskinen
  • Jie Xiong
  • Jukka Corander
  • Timo Koski

Abstract

type="main" xml:id="sjos12053-abs-0001"> Finite memory sources and variable-length Markov chains have recently gained popularity in data compression and mining, in particular, for applications in bioinformatics and language modelling. Here, we consider denser data compression and prediction with a family of sparse Bayesian predictive models for Markov chains in finite state spaces. Our approach lumps transition probabilities into classes composed of invariant probabilities, such that the resulting models need not have a hierarchical structure as in context tree-based approaches. This can lead to a substantially higher rate of data compression, and such non-hierarchical sparse models can be motivated for instance by data dependence structures existing in the bioinformatics context. We describe a Bayesian inference algorithm for learning sparse Markov models through clustering of transition probabilities. Experiments with DNA sequence and protein data show that our approach is competitive in both prediction and classification when compared with several alternative methods on the basis of variable memory length.

Suggested Citation

  • Väinö Jääskinen & Jie Xiong & Jukka Corander & Timo Koski, 2014. "Sparse Markov Chains for Sequence Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 639-655, September.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:3:p:639-655
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12053
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erlandson F. Saraiva & Luis A. Milan, 2012. "Clustering Gene Expression Data using a Posterior Split-Merge-Birth Procedure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(3), pages 399-415, September.
    2. Farcomeni, Alessio, 2011. "Hidden Markov partition models," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1766-1770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    2. Donald E. K. Martin, 2020. "Distributions of pattern statistics in sparse Markov models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 895-913, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    2. Gustavo Alexis Sabillón & Luiz Gabriel Fernandes Cotrim & Daiane Aparecida Zuanetti, 2023. "A data-driven reversible jump for estimating a finite mixture of regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 350-369, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:3:p:639-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.