IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i4p568-587.html
   My bibliography  Save this article

Two‐Sample Bootstrap Hypothesis Tests for Three‐Dimensional Labelled Landmark Data

Author

Listed:
  • SIMON P. PRESTON
  • ANDREW T. A. WOOD

Abstract

. We investigate resampling methodologies for testing the null hypothesis that two samples of labelled landmark data in three dimensions come from populations with a common mean reflection shape or mean reflection size‐and‐shape. The investigation includes comparisons between (i) two different test statistics that are functions of the projection onto tangent space of the data, namely the James statistic and an empirical likelihood statistic; (ii) bootstrap and permutation procedures; and (iii) three methods for resampling under the null hypothesis, namely translating in tangent space, resampling using weights determined by empirical likelihood and using a novel method to transform the original sample entirely within refection shape space. We present results of extensive numerical simulations, on which basis we recommend a bootstrap test procedure that we expect will work well in practise. We demonstrate the procedure using a data set of human faces, to test whether humans in different age groups have a common mean face shape.

Suggested Citation

  • Simon P. Preston & Andrew T. A. Wood, 2010. "Two‐Sample Bootstrap Hypothesis Tests for Three‐Dimensional Labelled Landmark Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 568-587, December.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:4:p:568-587
    DOI: 10.1111/j.1467-9469.2010.00690.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2010.00690.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2010.00690.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Nonparametric hypothesis testing for equality of means on the simplex," MPRA Paper 72771, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:4:p:568-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.