IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v29y2002i3p425-440.html
   My bibliography  Save this article

Computational Aspects Related to Martingale Estimating Functions for a Discretely Observed Diffusion

Author

Listed:
  • MATHIEU KESSLER
  • SILVESTRE PAREDES

Abstract

Martingale estimating functions for a discretely observed diffusion have turned out to provide estimators with nice asymptotic properties. However, their expression usually involves some conditional expectation that has to be evaluated through Monte Carlo simulations giving rise to an approximated estimator. In this work we study, for ergodic models, the asymptotic properties of the approximated estimator and describe the influence of the number of independent simulated trajectories involved in the Monte Carlo method as well as of the approximation scheme used. Our results are of practical relevance to assess the implementation of martingale estimating functions for discretely observed diffusions.

Suggested Citation

  • Mathieu Kessler & Silvestre Paredes, 2002. "Computational Aspects Related to Martingale Estimating Functions for a Discretely Observed Diffusion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 425-440, September.
  • Handle: RePEc:bla:scjsta:v:29:y:2002:i:3:p:425-440
    DOI: 10.1111/1467-9469.00299
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00299
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    2. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2004, January-A.
    3. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    4. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.
    5. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    6. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    7. Zhang, Shulin & Song, Peter X.-K. & Shi, Daimin & Zhou, Qian M., 2012. "Information ratio test for model misspecification on parametric structures in stochastic diffusion models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3975-3987.
    8. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    9. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    10. Mathieu Kessler & Michael Sørensen, 2005. "On Time-Reversibility and Estimating Functions for Markov Processes," Statistical Inference for Stochastic Processes, Springer, vol. 8(1), pages 95-107, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:29:y:2002:i:3:p:425-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.