IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v29y2002i1p75-88.html
   My bibliography  Save this article

An Additive–Multiplicative Cox–Aalen Regression Model

Author

Listed:
  • THOMAS H. SCHEIKE
  • MEI‐JIE ZHANG

Abstract

We propose an additive–multiplicative intensity model that extends the Cox regression model as well as the additive Aalen model. Instead of having a simple baseline intensity the extended model uses an additive Aalen model as its covariate dependent baseline. Approximate maximum likelihood estimators of the baseline intensity functions and the relative risk parameters of the Cox model are suggested by solving the score equations. The derived estimator is efficient. We establish the large sample properties of the estimator. The model provides a simple pragmatic way of including time‐varying covariate effects.

Suggested Citation

  • Thomas H. Scheike & Mei‐Jie Zhang, 2002. "An Additive–Multiplicative Cox–Aalen Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 75-88, March.
  • Handle: RePEc:bla:scjsta:v:29:y:2002:i:1:p:75-88
    DOI: 10.1111/1467-9469.00065
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00065
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.
    2. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    3. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    4. Audrey Boruvka & Richard J. Cook, 2015. "A Cox-Aalen Model for Interval-censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 414-426, June.
    5. Christa Brelsford & Caterina De Bacco, 2018. "Are `Water Smart Landscapes' Contagious? An epidemic approach on networks to study peer effects," Papers 1801.10516, arXiv.org.
    6. Christa Brelsford & Caterina Bacco, 2018. "Are ‘Water Smart Landscapes’ Contagious? An Epidemic Approach on Networks to Study Peer Effects," Networks and Spatial Economics, Springer, vol. 18(3), pages 577-613, September.
    7. Pablo Martínez-Camblor, 2022. "Learning the Treatment Impact on Time-to-Event Outcomes: The Transcarotid Artery Revascularization Simulated Cohort," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    8. Thomas H. Scheike & Mei-Jie Zhang, 2003. "Extensions and Applications of the Cox-Aalen Survival Model," Biometrics, The International Biometric Society, vol. 59(4), pages 1036-1045, December.
    9. Kraus, David, 2004. "Goodness-of-fit inference for the Cox-Aalen additive-multiplicative regression model," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 285-298, December.
    10. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    11. Hao, Meiling & Zhao, Xingqiu & Xu, Wei, 2020. "Competing risk modeling and testing for X-chromosome genetic association," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:29:y:2002:i:1:p:75-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.