IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v15y2023i3p506-519.html
   My bibliography  Save this article

Time Series Analysis Using Different Forecast Methods and Case Fatality Rate for Covid‐19 Pandemic

Author

Listed:
  • Atanu Bhattacharjee
  • Gajendra K. Vishwakarma
  • Namrata Gajare
  • Neha Singh

Abstract

This study presents forecasting methods using time series analysis for confirmed cases, the number of deaths and recovery cases, and individual vaccination status in different states of India. It aims to forecast the confirmed cases and mortality rate and develop an artificial intelligence method and different statistical methodologies that can help predict the future of Covid‐19 cases. Various forecasting methods in time series analysis such as ARIMA, Holt's trend, naive, simple exponential smoothing, TBATS, and MAPE are extended for the study. It also involved the case fatality rate for the number of deaths and confirmed cases for respective states in India. This study includes the forecast values for the number of positive cases, cured patients, mortality rate, and case fatality rate for Covid‐19 cases. Among all forecast methods involved in this study, the naive and simple exponential smoothing method shows an increased number of positive instances and cured patients. Este estudio presenta métodos de pronóstico que utilizan el análisis de series temporales para los casos confirmados, el número de muertes y casos recuperados, y el estado de vacunación individual en diferentes estados de la India. Su objetivo es pronosticar los casos confirmados y la tasa de mortalidad y desarrollar un método de inteligencia artificial y diferentes metodologías estadísticas que puedan ayudar a predecir el futuro de los casos de Covid‐19. Para el estudio se adaptaron varios métodos de pronóstico para el análisis de series temporales como ARIMA, la tendencia de Holt, el ingenuo, el suavizado exponencial simple, TBATS y MAPE. También se incluyó la tasa de fatalidades para el número de muertes y casos confirmados para los respectivos estados de la India. Este estudio incluye los valores de pronóstico para el número de casos positivos, los pacientes curados, la tasa de mortalidad y la tasa de fatalidades para los casos de Covid‐19. Entre todos los métodos de pronóstico utilizados en este estudio, el método ingenuo y el de suavización exponencial simple muestran un mayor número de casos positivos y de pacientes curados. 本研究は、インドの州における確定症例、死亡数及び回復例、および個人のワクチン接種状況に関する時系列分析を用いた予測方法を提示する。確定症例と死亡率を予測し、人工知能を用いた方法とCOVID‐19の症例の将来を予測するのに役立ついくつかの統計学的方法論を開発することを目指す。ARIMA、Holtのトレンド、単純法、単純指数平滑化法、TBATS、MAPEなどの時系列解析における各種予測法を拡張した。また、インドの各州の死亡者数と確定症例数の致死率も含んだ。本研究は、COVID‐19症例に対する、陽性症例数、治癒患者数、死亡率、および致死率に対する予測値を含む。この研究に含まれるすべての予測法の中で、単純法と単純指数平滑法は、陽性者数と治癒患者数の増加を予測した。

Suggested Citation

  • Atanu Bhattacharjee & Gajendra K. Vishwakarma & Namrata Gajare & Neha Singh, 2023. "Time Series Analysis Using Different Forecast Methods and Case Fatality Rate for Covid‐19 Pandemic," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 506-519, April.
  • Handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:506-519
    DOI: 10.1111/rsp3.12555
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12555
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    2. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    3. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    4. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    5. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    6. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    7. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    8. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    9. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    10. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    11. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    12. repec:bny:wpaper:0003 is not listed on IDEAS
    13. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    14. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    15. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    16. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    17. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    20. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    21. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:506-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.