IDEAS home Printed from https://ideas.repec.org/a/bla/presci/v97y2018is1ps63-s78.html
   My bibliography  Save this article

Analysing spatial spillovers in corruption: A dynamic spatial panel data approach

Author

Listed:
  • Hermann Pythagore Pierre Donfouet
  • P. Wilner Jeanty
  • Eric Malin

Abstract

Previous studies on the determinants of corruption have seldom addressed cross‐border spillovers of corruption in a panel data setting. In this paper, we first propose a theoretical model of spatial corruption spillover based on network analysis. Then, we analyse spatial spillovers in corruption using a dynamic spatial panel approach. The results indicate that corruption not only exhibits spatial spillovers but also a persistent effect over time. More importantly, increase of income per capita, economic freedom, and percentage of women in the parliaments have a long‐term effect on the perceived levels of corruption. Policies and programmes aiming at abating corruption must take into consideration those results. Los estudios previos sobre los determinantes de la corrupción casi nunca han abordado los efectos transfronterizos de spillover de la corrupción en una configuración de datos de panel. En este artículo se propone primero un modelo teórico de spillover de corrupción espacial basado en el análisis de redes. A continuación, se analizan los spillovers espaciales en la corrupción mediante un enfoque de panel dinámico espacial. Los resultados indican que la corrupción no solo exhibe spillovers espaciales sino también un efecto persistente a lo largo del tiempo. Más importante aún, el aumento de los ingresos per cápita, la libertad económica y el porcentaje de mujeres en los parlamentos tienen un efecto a largo plazo sobre los niveles percibidos de corrupción. Las políticas y programas destinados a reducir la corrupción deben tener en cuenta dichos resultados. 腐敗(corruption)の決定要因に関して過去に行われた研究では、パネルデータ分析により国境を超える腐敗の波及効果を検討したものはほとんど認めらない。本稿では、まず、ネットワーク分析に基づいた、腐敗の空間的波及効果の理論モデルを提示する。次に、ダイナミック空間パネルアプローチにより、腐敗の空間的波及効果を分析する。結果から、腐敗には空間的波及効果があるだけでなく、その効果が経時的に続くことも示唆される。さらに重要なこととして、一人あたりの収入の増加、経済的自由、女性の国会議員の割合が、認められる腐敗のレベルに対する長期的効果を及ぼしている。腐敗を減らすことを目指した政策プログラムは、これらの結果を考慮に入れなければならない。

Suggested Citation

  • Hermann Pythagore Pierre Donfouet & P. Wilner Jeanty & Eric Malin, 2018. "Analysing spatial spillovers in corruption: A dynamic spatial panel data approach," Papers in Regional Science, Wiley Blackwell, vol. 97(S1), pages 63-78, March.
  • Handle: RePEc:bla:presci:v:97:y:2018:i:s1:p:s63-s78
    DOI: 10.1111/pirs.12231
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/pirs.12231
    Download Restriction: no

    File URL: https://libkey.io/10.1111/pirs.12231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Yu & Linke Hou & Yuxia Lyu & Qi Zhang, 2022. "Political competition, spatial interactions, and default risk of local government debts in China," Papers in Regional Science, Wiley Blackwell, vol. 101(3), pages 717-743, June.
    2. Julien Hanoteau & Gandhi Pawitan & Virginie Vial, 2021. "Does social capital reduce entrepreneurs' petty corruption? Evidence across Indonesian regions," Papers in Regional Science, Wiley Blackwell, vol. 100(3), pages 651-670, June.
    3. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    4. Canhoto, Ana Isabel, 2021. "Leveraging machine learning in the global fight against money laundering and terrorism financing: An affordances perspective," Journal of Business Research, Elsevier, vol. 131(C), pages 441-452.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:presci:v:97:y:2018:i:s1:p:s63-s78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1056-8190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.