IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i8p2656-2673.html
   My bibliography  Save this article

Patient‐controlled use of nonphysician providers: Appointment scheduling in mixed‐provider settings

Author

Listed:
  • Enayon Sunday Taiwo
  • Sergei Savin
  • Yuohua Chen (Frank)
  • Kwai‐Sang Chin

Abstract

The aging population and increasing chronic disease load are rapidly changing the face of primary care delivery, with mid‐level (e.g., nurse) practitioners providing growing proportion of patient care. Potential differences in the quality of care offered by physicians and nurse practitioners may affect patient preferences, thus leading to patient choice behavior. This paper focuses on the problem of appointment scheduling for physician–nurse teams in the presence of patient choice and no‐shows. We propose a novel model that accounts for patient choices in a system with two provider types. Despite the increased structural complexity of the model, we derive sufficient conditions under which the problem is efficiently solvable. To counter the computational challenges arising in the general setting, we propose an easy‐to‐implement heuristic, which is proven to be optimal in the absence of patient no‐shows. Our numerical study shows how the ratio of qualities of care delivered by nurses and physicians affect the profitability of the medical practice, enabling the analysis of the trade‐offs involved in hiring a nurse practitioner. This paper introduces a patient‐controlled approach to incorporating nonphysician providers into physician‐led outpatient care delivery systems and compares it to widely used “ice breaker” and “standalone” modes of using nonphysician providers. Our findings reveal that clinical practices that employ mixed (physicians and nonphysicians) provider pools can significantly improve their financial and operational performance by moving away from the “ice breaker” and “standalone” use of nonphysician providers by delaying the selection of an appropriate care provider till the actual day of care delivery.

Suggested Citation

  • Enayon Sunday Taiwo & Sergei Savin & Yuohua Chen (Frank) & Kwai‐Sang Chin, 2023. "Patient‐controlled use of nonphysician providers: Appointment scheduling in mixed‐provider settings," Production and Operations Management, Production and Operations Management Society, vol. 32(8), pages 2656-2673, August.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:8:p:2656-2673
    DOI: 10.1111/poms.14000
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.14000
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.14000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    2. Rachel R. Chen & Lawrence W. Robinson, 2014. "Sequencing and Scheduling Appointments with Potential Call-In Patients," Production and Operations Management, Production and Operations Management Society, vol. 23(9), pages 1522-1538, September.
    3. Stange, Kevin, 2014. "How does provider supply and regulation influence health care markets? Evidence from nurse practitioners and physician assistants," Journal of Health Economics, Elsevier, vol. 33(C), pages 1-27.
    4. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    5. Wen-Ya Wang & Diwakar Gupta, 2011. "Adaptive Appointment Systems with Patient Preferences," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 373-389, July.
    6. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    7. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    8. Soltani, Mohamad & Samorani, Michele & Kolfal, Bora, 2019. "Appointment scheduling with multiple providers and stochastic service times," European Journal of Operational Research, Elsevier, vol. 277(2), pages 667-683.
    9. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    10. Nan Liu & Peter M. van de Ven & Bo Zhang, 2019. "Managing Appointment Booking Under Customer Choices," Management Science, INFORMS, vol. 65(9), pages 4280-4298, September.
    11. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    2. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    3. Cai, Yun & Song, Haiqing & Wang, Shan, 2024. "Managing appointment-based services with electronic visits," European Journal of Operational Research, Elsevier, vol. 315(3), pages 863-878.
    4. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    5. Seokjun Youn & H. Neil Geismar & Michael Pinedo, 2022. "Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4407-4423, December.
    6. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G. & Foster, Krista M., 2020. "The effect of cancelled appointments on outpatient clinic operations," European Journal of Operational Research, Elsevier, vol. 284(3), pages 847-860.
    7. Dongyang Wang & Kumar Muthuraman & Douglas Morrice, 2019. "Coordinated Patient Appointment Scheduling for a Multistation Healthcare Network," Operations Research, INFORMS, vol. 67(3), pages 599-618, May.
    8. Mahes, Roshan & Mandjes, Michel & Boon, Marko & Taylor, Peter, 2024. "Adaptive scheduling in service systems: A Dynamic programming approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 605-626.
    9. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    10. Zhou, Shenghai & Li, Debiao & Yin, Yong, 2021. "Coordinated appointment scheduling with multiple providers and patient-and-physician matching cost in specialty care," Omega, Elsevier, vol. 101(C).
    11. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    12. Agrawal, Deepak & Pang, Guodong & Kumara, Soundar, 2023. "Preference based scheduling in a healthcare provider network," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1318-1335.
    13. Xin Chen & Menglong Li, 2021. "Discrete Convex Analysis and Its Applications in Operations: A Survey," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1904-1926, June.
    14. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    15. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    16. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    17. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    18. Tunçalp, Feray & Güneş, Evrim D. & Örmeci, E. Lerzan, 2024. "Modeling strategic walk-in patients in appointment systems: Equilibrium behavior and capacity allocation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 587-601.
    19. Yu Zhang & Vidyadhar G. Kulkarni, 2017. "Two-day appointment scheduling with patient preferences and geometric arrivals," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 173-209, February.
    20. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:8:p:2656-2673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.