IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i1p261-282.html
   My bibliography  Save this article

Bid price controls for car rental network revenue management

Author

Listed:
  • Dong Li
  • Zhan Pang
  • Lixian Qian

Abstract

We consider a car rental network revenue management (RM) problem, accounting for the key operational characteristics of car rental services such as the varying length of rentals and mobility of inventories, which imply the intertemporal and spatial correlations of rental demands for inventories across different locations and days. The problem is formulated as an infinite‐horizon cyclic stochastic dynamic program to account for the time‐varying and cyclic nature of car rental businesses. To tackle the curse of dimensionality, we propose a Lagrangian relaxation (LR) approach with product‐ and time‐dependent Lagrangian multipliers to decomposing the dynamic network problem into multiple single‐station single‐day subproblems. We show that the Lagrangian dual problem is a convex program and then develop a subgradient‐based algorithm to solve the dual problem and derive an LR‐based bid price policy. To improve the scalability of the LR approach, we further propose three simpler LR‐based bid price policy variants with either location‐dependent or leadtime‐dependent Lagrangian multipliers, or both. Our numerical study indicates that the LR‐based bid price policies can outperform some commonly used heuristics. Using a set of real‐world booking data, we provide a case study in which we empirically demonstrate the operational characteristics of car rental services, calibrate the arrival process of booking requests using a Poisson regression model, and demonstrate that the LR‐based bid price policies indeed outperform other heuristics consistently in both in‐sample and out‐of‐sample horizons.

Suggested Citation

  • Dong Li & Zhan Pang & Lixian Qian, 2023. "Bid price controls for car rental network revenue management," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 261-282, January.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:1:p:261-282
    DOI: 10.1111/poms.13836
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13836
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steinhardt, Claudius & Gönsch, Jochen, 2012. "Integrated revenue management approaches for capacity control with planned upgrades," European Journal of Operational Research, Elsevier, vol. 223(2), pages 380-391.
    2. Noah Gans & Sergei Savin, 2007. "Pricing and Capacity Rationing for Rentals with Uncertain Durations," Management Science, INFORMS, vol. 53(3), pages 390-407, March.
    3. Youyi Feng & Baichun Xiao, 2000. "Optimal Policies of Yield Management with Multiple Predetermined Prices," Operations Research, INFORMS, vol. 48(2), pages 332-343, April.
    4. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    5. Julien Guillen & Pierre Ruiz & Umberto Dellepiane & Ludovica Maccarrone & Raffaele Maccioni & Alessandro Pinzuti & Enrico Procacci, 2019. "Europcar Integrates Forecasting, Simulation, and Optimization Techniques in a Capacity and Revenue Management System," Interfaces, INFORMS, vol. 49(1), pages 1-40, January.
    6. Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2017. "Fleet and revenue management in car rental companies: A literature review and an integrated conceptual framework," Omega, Elsevier, vol. 71(C), pages 11-26.
    7. Sumit Kunnumkal & Huseyin Topaloglu, 2010. "Computing Time-Dependent Bid Prices in Network Revenue Management Problems," Transportation Science, INFORMS, vol. 44(1), pages 38-62, February.
    8. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    9. Sergei V. Savin & Morris A. Cohen & Noah Gans & Ziv Katalan, 2005. "Capacity Management in Rental Businesses with Two Customer Bases," Operations Research, INFORMS, vol. 53(4), pages 617-631, August.
    10. M. K. Geraghty & Ernest Johnson, 1997. "Revenue Management Saves National Car Rental," Interfaces, INFORMS, vol. 27(1), pages 107-127, February.
    11. William J. Carroll & Richard C. Grimes, 1995. "Evolutionary Change in Product Management: Experiences in the Car Rental Industry," Interfaces, INFORMS, vol. 25(5), pages 84-104, October.
    12. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    13. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    14. Li, Dong & Pang, Zhan, 2017. "Dynamic booking control for car rental revenue management: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 850-867.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    2. Li, Dong & Pang, Zhan, 2017. "Dynamic booking control for car rental revenue management: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 850-867.
    3. Sumit Kunnumkal & Kalyan Talluri, 2016. "On a Piecewise-Linear Approximation for Network Revenue Management," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 72-91, February.
    4. Xiang Zhao & Xinghua Shan & Jinfei Wu, 2023. "The Impact of Seat Resource Fragmentation on Railway Network Revenue Management," Networks and Spatial Economics, Springer, vol. 23(1), pages 135-177, March.
    5. David Sayah, 2015. "Approximate Linear Programming in Network Revenue Management with Multiple Modes," Working Papers 1518, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    6. Naragain Phumchusri & Phatsakorn Sangsukiam & Nannapat Chariyasethapong, 2020. "Optimal overbooking model for car rental business with two levels of prices having stochastic joint booking and show-up levels," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(3), pages 190-209, June.
    7. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    8. Huang, Kuancheng & Lin, Chia-Yi, 2014. "A simulation analysis for the re-solving issue of the network revenue management problem," Journal of Air Transport Management, Elsevier, vol. 38(C), pages 36-42.
    9. Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).
    10. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    11. Xufeng Yang & Wen Jiao & Juliang Zhang & Hong Yan, 2022. "Capacity management for a leasing system with different equipment and batch demands," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 3004-3020, July.
    12. Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2017. "Fleet and revenue management in car rental companies: A literature review and an integrated conceptual framework," Omega, Elsevier, vol. 71(C), pages 11-26.
    13. Sumit Kunnumkal & Kalyan Talluri, 2011. "Equivalence of piecewise-linear approximation and Lagrangian relaxation for network revenue management," Economics Working Papers 1305, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2012.
    14. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    15. C.K. Anderson & M. Davison & H. Rasmussen, 2004. "Revenue management: A real options approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 686-703, August.
    16. Wang, Tingsong & Meng, Qiang & Tian, Xuecheng, 2024. "Dynamic container slot allocation for a liner shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    17. Xufeng Yang & Juliang Zhang & Wen Jiao & Hong Yan, 2023. "Optimal Capacity Rationing Policy for a Container Leasing System with Multiple Kinds of Customers and Substitutable Containers," Management Science, INFORMS, vol. 69(3), pages 1468-1485, March.
    18. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    19. Ş. İlker Birbil & J. B. G. Frenk & Joaquim A. S. Gromicho & Shuzhong Zhang, 2014. "A Network Airline Revenue Management Framework Based on Decomposition by Origins and Destinations," Transportation Science, INFORMS, vol. 48(3), pages 313-333, August.
    20. Wang, Xinchang & Wang, Hua & Zhang, Xiaoning, 2016. "Stochastic seat allocation models for passenger rail transportation under customer choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 95-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:1:p:261-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.