IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i6p2571-2587.html
   My bibliography  Save this article

A study about return policies in the presence of consumer social learning

Author

Listed:
  • Bingsheng Liu
  • Wenwen Zhu
  • Yinghua Shen
  • Yuan Chen
  • Tao Wang
  • Fengwen Chen
  • Maggie Wenjing Liu
  • Shi‐Hao Zhou

Abstract

Sellers are conventionally generous with their return policies for valuation‐uncertain products, such as experience products and new products. However, with the development of online review platforms, an increasing number of consumers are engaging in social learning by referring to others' reviews to reduce valuation uncertainty. In this study, we investigate how social learning interacts with sellers' return policies. There are three main conclusions. First, when sellers have a relatively higher expectation of product quality (or simply the product quality is high), social learning makes the sellers offering either no‐refund policies or partial‐refund policies better off in terms of the increased profit. It will cause the no‐refund sellers to choose higher prices and inventory, and the partial‐refund sellers to set lower prices and refund amounts. Second, under social learning, the partial‐refund policy tends to be more beneficial to sellers than both full‐refund and no‐refund policies; although, when the product quality is high, the no‐refund policy tends to bring more benefits to sellers than the full‐refund policy. Hence, sellers may finally switch to the partial‐refund policy. Third, for partial‐refund policies, more often than not, social learning increases social welfare when the product quality is high; specifically, in many cases, it increases not only the profit of the seller but also the welfare of consumers.

Suggested Citation

  • Bingsheng Liu & Wenwen Zhu & Yinghua Shen & Yuan Chen & Tao Wang & Fengwen Chen & Maggie Wenjing Liu & Shi‐Hao Zhou, 2022. "A study about return policies in the presence of consumer social learning," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2571-2587, June.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2571-2587
    DOI: 10.1111/poms.13703
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13703
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meng Li & Yunchuan Liu, 2021. "Beneficial Product Returns in Supply Chains," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 3849-3855, November.
    2. Paolo Letizia & Morteza Pourakbar & Terry Harrison, 2018. "The Impact of Consumer Returns on the Multichannel Sales Strategies of Manufacturers," Production and Operations Management, Production and Operations Management Society, vol. 27(2), pages 323-349, February.
    3. Bing Jing, 2011. "Social Learning and Dynamic Pricing of Durable Goods," Marketing Science, INFORMS, vol. 30(5), pages 851-865, September.
    4. Davis, Scott & Hagerty, Michael & Gerstner, Eitan, 1998. "Return policies and the optimal level of "hassle"," Journal of Economics and Business, Elsevier, vol. 50(5), pages 445-460, September.
    5. Brekke Kjell Arne & Rege Mari, 2007. "Advertising as a Distortion of Social Learning," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-18, October.
    6. Mehmet Sekip Altug & Tolga Aydinliyim, 2016. "Counteracting Strategic Purchase Deferrals: The Impact of Online Retailers’ Return Policy Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 376-392, July.
    7. Jing Chen & Bintong Chen, 2016. "Competing with customer returns policies," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2093-2107, April.
    8. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    9. Sun, Miao & Chen, Jing & Tian, Ye & Yan, Yufei, 2021. "The impact of online reviews in the presence of customer returns," International Journal of Production Economics, Elsevier, vol. 232(C).
    10. Minnema, Alec & Bijmolt, Tammo H.A. & Gensler, Sonja & Wiesel, Thorsten, 2016. "To Keep or Not to Keep: Effects of Online Customer Reviews on Product Returns," Journal of Retailing, Elsevier, vol. 92(3), pages 253-267.
    11. Leela Nageswaran & Soo-Haeng Cho & Alan Scheller-Wolf, 2020. "Consumer Return Policies in Omnichannel Operations," Management Science, INFORMS, vol. 66(12), pages 5558-5575, December.
    12. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    13. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    14. Buqing Ma & Chenchen Di & Lu Hsiao, 2020. "Return Window Decision in A Distribution Channel," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2121-2137, September.
    15. Qian Ma & Biying Shou & Jianwei Huang & Tamer Başar, 2021. "Monopoly Pricing with Participation‐Dependent Social Learning About Quality of Service," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4004-4022, November.
    16. Xuanming Su, 2009. "Consumer Returns Policies and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 595-612, March.
    17. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.
    18. Baojun Jiang & Bicheng Yang, 2019. "Quality and Pricing Decisions in a Market with Consumer Information Sharing," Management Science, INFORMS, vol. 65(1), pages 272-285, January.
    19. Lu Hsiao & Ying‐Ju Chen, 2015. "Retailer's rationale to refuse consumer returns in supply chains," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 686-701, December.
    20. Xu Guan & Yulan Wang & Zelong Yi & Ying‐Ju Chen, 2020. "Inducing Consumer Online Reviews Via Disclosure," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1956-1971, August.
    21. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    22. Yiangos Papanastasiou & Kostas Bimpikis & Nicos Savva, 2018. "Crowdsourcing Exploration," Management Science, INFORMS, vol. 64(4), pages 1727-1746, April.
    23. Robert Swinney, 2011. "Selling to Strategic Consumers When Product Value Is Uncertain: The Value of Matching Supply and Demand," Management Science, INFORMS, vol. 57(10), pages 1737-1751, October.
    24. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    25. Jeffrey D. Shulman & Anne T. Coughlan & R. Canan Savaskan, 2011. "Managing Consumer Returns in a Competitive Environment," Management Science, INFORMS, vol. 57(2), pages 347-362, February.
    26. Huseyn Abdulla & James D. Abbey & Michael Ketzenberg, 2022. "How consumers value retailer's return policy leniency levers: An empirical investigation," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1719-1733, April.
    27. Man Yu & Laurens Debo & Roman Kapuscinski, 2016. "Strategic Waiting for Consumer-Generated Quality Information: Dynamic Pricing of New Experience Goods," Management Science, INFORMS, vol. 62(2), pages 410-435, February.
    28. Xiao Huang & Dan Zhang, 2020. "Service Product Design and Consumer Refund Policies," Marketing Science, INFORMS, vol. 39(2), pages 366-381, March.
    29. Pnina Feldman & Yiangos Papanastasiou & Ella Segev, 2019. "Social Learning and the Design of New Experience Goods," Management Science, INFORMS, vol. 65(5), pages 1502-1519, April.
    30. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiang & Ji, Xiang & Zhao, Nenggui, 2024. "Embracing the power of AI in retail platform operations: Considering the showrooming effect and consumer returns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    2. Jindong Qin & Pan Zheng & Xiaojun Wang, 2024. "Product Redesign and Innovation Based on Online Reviews: A Multistage Combined Search Method," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 742-765, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Huirong & Khouja, Moutaz & Gao, Jie & Zhou, Jing, 2023. "Incorporating social learning into the optimal return and pricing decisions of online retailers," Omega, Elsevier, vol. 118(C).
    2. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Li, Feng & Du, Timon C. & Wei, Ying, 2023. "This is what’s in store for you: How online social learning affects product positioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    4. Lu Xiao & Hang Zhang & Yong Qin, 2020. "Competitive Pricing of Innovative Products with Consumers’ Social Learning," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    5. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    6. Kimon Drakopoulos & Ali Makhdoumi, 2023. "Providing Data Samples for Free," Management Science, INFORMS, vol. 69(6), pages 3536-3560, June.
    7. Pnina Feldman & Yiangos Papanastasiou & Ella Segev, 2019. "Social Learning and the Design of New Experience Goods," Management Science, INFORMS, vol. 65(5), pages 1502-1519, April.
    8. Rui Hou & Zibin Cui & You Zhao, 2022. "Pricing leadership decisions of competing firms with consumer learning," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2326-2346, September.
    9. Jin, Delong & Caliskan-Demirag, Ozgun & Chen, Frank (Youhua) & Huang, Min, 2020. "Omnichannel retailers’ return policy strategies in the presence of competition," International Journal of Production Economics, Elsevier, vol. 225(C).
    10. Li Chen & Yiangos Papanastasiou, 2021. "Seeding the Herd: Pricing and Welfare Effects of Social Learning Manipulation," Management Science, INFORMS, vol. 67(11), pages 6734-6750, November.
    11. Fei Gao & Xuanming Su, 2017. "Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 84-98, February.
    12. Mandal, Prasenjit & Basu, Preetam & Saha, Kushal, 2021. "Forays into omnichannel: An online retailer’s strategies for managing product returns," European Journal of Operational Research, Elsevier, vol. 292(2), pages 633-651.
    13. Yang, Rui & Tang, Wansheng & Dou, Mengdi & Zhang, Jianxiong, 2021. "Pricing and investing in co-creation with customers for a duopoly," International Journal of Production Economics, Elsevier, vol. 237(C).
    14. Xiaofang Wang & Yaoyao Yang & Jun Zhuang, 2023. "Pricing Decisions with Social Interactions: A Game-Theoretic Model," Decision Analysis, INFORMS, vol. 20(1), pages 40-54, March.
    15. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    16. Kaiying Cao & Tsan‐Ming Choi, 2022. "Optimal Trade‐in Return Policies: Is it Wise to be Generous?," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1309-1331, March.
    17. Lin, Jiaxin & Choi, Tsan-Ming & Kuo, Yong-Hong, 2023. "Will providing return-freight-insurances do more good than harm to dual-channel e-commerce retailers?," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1225-1239.
    18. Chen, Hao-Wei, 2023. "Improving supply quality through the store-initiated returns in wholesale supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    19. Zhang, Kun & Choi, Tsan-Ming & Chung, Sai-Ho & Dai, Yue & Wen, Xin, 2024. "Blockchain adoption in retail operations: Stablecoins and traceability," European Journal of Operational Research, Elsevier, vol. 315(1), pages 147-160.
    20. Jian Liu & Xinyue Sun & Yanyan Liu, 2022. "Products pricing and return strategies for the dual channel retailers," Operational Research, Springer, vol. 22(4), pages 3841-3867, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:6:p:2571-2587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.