IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i1p172-193.html
   My bibliography  Save this article

When to Triage in Service Systems with Hidden Customer Class Identities?

Author

Listed:
  • Zhankun Sun
  • Nilay Tanık Argon
  • Serhan Ziya

Abstract

In service systems with heterogeneous customers, prioritization with respect to the relative importance of customers is known to improve certain performance measures. However, in many applications, information necessary to determine the importance level of a customer may not be available immediately but can be revealed only through some preliminary investigation, which is sometimes called triage. This triage process is typically error‐prone and may take substantial amount of time, and hence, it is not always clear if and when it should be implemented for purposes of priority assignment. To provide insights into this question, we study a stylized queueing model with a single server and two types of customers with hidden type identities, which differ in their rates of service and waiting costs. By means of a Markov decision formulation, we first show that the optimal dynamic policy on triage is characterized by a switching curve. The comparison of two state‐independent policies (no‐triage and triage‐all) shows that the information from triage is more beneficial when the traffic intensity is neither too low nor too high. Our numerical results show that the system manager should consider implementing a state‐dependent triage policy when the probability of classifying a customer into the important class and the mean triage time are of moderate size, when the difference between the importance levels of the two classes of customers is large, and/or when the traffic intensity is high.

Suggested Citation

  • Zhankun Sun & Nilay Tanık Argon & Serhan Ziya, 2022. "When to Triage in Service Systems with Hidden Customer Class Identities?," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 172-193, January.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:1:p:172-193
    DOI: 10.1111/poms.13494
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13494
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert A. Shumsky & Edieal J. Pinker, 2003. "Gatekeepers and Referrals in Services," Management Science, INFORMS, vol. 49(7), pages 839-856, July.
    2. Yichuan Ding & Eric Park & Mahesh Nagarajan & Eric Grafstein, 2019. "Patient Prioritization in Emergency Department Triage Systems: An Empirical Study of the Canadian Triage and Acuity Scale (CTAS)," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 723-741, October.
    3. Maria R. Ibanez & Jonathan R. Clark & Robert S. Huckman & Bradley R. Staats, 2018. "Discretionary Task Ordering: Queue Management in Radiological Services," Management Science, INFORMS, vol. 64(9), pages 4389-4407, September.
    4. Michael Pinedo, 1983. "Stochastic Scheduling with Release Dates and Due Dates," Operations Research, INFORMS, vol. 31(3), pages 559-572, June.
    5. Dong-Wan Tcha & Stanley R. Pliska, 1977. "Optimal Control of Single-Server Queuing Networks and Multi-Class M / G /1 Queues with Feedback," Operations Research, INFORMS, vol. 25(2), pages 248-258, April.
    6. Avishai Mandelbaum & Alexander L. Stolyar, 2004. "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cμ-Rule," Operations Research, INFORMS, vol. 52(6), pages 836-855, December.
    7. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    8. Saed Alizamir & Francis de Véricourt & Peng Sun, 2013. "Diagnostic Accuracy Under Congestion," Management Science, INFORMS, vol. 59(1), pages 157-171, December.
    9. Soroush Saghafian & Wallace J. Hopp & Mark P. Van Oyen & Jeffrey S. Desmond & Steven L. Kronick, 2014. "Complexity-Augmented Triage: A Tool for Improving Patient Safety and Operational Efficiency," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 329-345, July.
    10. Nilay Tan{i}k Argon & Serhan Ziya, 2009. "Priority Assignment Under Imperfect Information on Customer Type Identities," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 674-693, June.
    11. J. Michael Harrison, 1975. "Dynamic Scheduling of a Multiclass Queue: Discount Optimality," Operations Research, INFORMS, vol. 23(2), pages 270-282, April.
    12. Ying Xu & Alan Scheller-Wolf & Katia Sycara, 2015. "The Benefit of Introducing Variability in Single-Server Queues with Application to Quality-Based Service Domains," Operations Research, INFORMS, vol. 63(1), pages 233-246, February.
    13. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    14. Zhankun Sun & Nilay Tan?k Argon & Serhan Ziya, 2018. "Patient Triage and Prioritization Under Austere Conditions," Management Science, INFORMS, vol. 64(10), pages 4471-4489, October.
    15. Xiaofang Wang & Laurens G. Debo & Alan Scheller-Wolf & Stephen F. Smith, 2010. "Design and Analysis of Diagnostic Service Centers," Management Science, INFORMS, vol. 56(11), pages 1873-1890, November.
    16. Mor Armony & Itai Gurvich, 2010. "When Promotions Meet Operations: Cross-Selling and Its Effect on Call Center Performance," Manufacturing & Service Operations Management, INFORMS, vol. 12(3), pages 470-488, April.
    17. Pengfei Guo & Paul Zipkin, 2007. "Analysis and Comparison of Queues with Different Levels of Delay Information," Management Science, INFORMS, vol. 53(6), pages 962-970, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhankun Sun & Nilay Tan?k Argon & Serhan Ziya, 2018. "Patient Triage and Prioritization Under Austere Conditions," Management Science, INFORMS, vol. 64(10), pages 4471-4489, October.
    2. Shen, Zuo-Jun Max & Xie, Jingui & Zheng, Zhichao & Zhou, Han, 2023. "Dynamic scheduling with uncertain job types," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1047-1060.
    3. Huiyin Ouyang & Nilay Taník Argon & Serhan Ziya, 2022. "Assigning Priorities (or Not) in Service Systems with Nonlinear Waiting Costs," Management Science, INFORMS, vol. 68(2), pages 1233-1255, February.
    4. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    5. Saghafian, Soroush & Hopp, Wallace J. & Iravani, Seyed M. R. & Cheng, Yao & Diermeier, Daniel, 2017. "Workload Management in Telemedical Physician Triage and Other Knowledge-Based Service Systems," Working Paper Series rwp17-035, Harvard University, John F. Kennedy School of Government.
    6. Pengyi Shi & Jonathan E. Helm & H. Sebastian Heese & Alice M. Mitchell, 2021. "An Operational Framework for the Adoption and Integration of New Diagnostic Tests," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 330-354, February.
    7. Mor Armony & Efrat Perel & Nir Perel & Uri Yechiali, 2019. "Exact analysis for multiserver queueing systems with cross selling," Annals of Operations Research, Springer, vol. 274(1), pages 75-100, March.
    8. Yichuan Ding & Eric Park & Mahesh Nagarajan & Eric Grafstein, 2019. "Patient Prioritization in Emergency Department Triage Systems: An Empirical Study of the Canadian Triage and Acuity Scale (CTAS)," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 723-741, October.
    9. Jinting Wang & Zhongbin Wang & Yunan Liu, 2020. "Reducing Delay in Retrial Queues by Simultaneously Differentiating Service and Retrial Rates," Operations Research, INFORMS, vol. 68(6), pages 1648-1667, November.
    10. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.
    11. Michael Freeman & Susan Robinson & Stefan Scholtes, 2021. "Gatekeeping, Fast and Slow: An Empirical Study of Referral Errors in the Emergency Department," Management Science, INFORMS, vol. 67(7), pages 4209-4232, July.
    12. Atkinson, Mariam K. & Saghafian, Soroush, 2019. "Who Should See the Patient? On Discretionary Patient-Provider Assignments in Hospitals," Working Paper Series rwp19-037, Harvard University, John F. Kennedy School of Government.
    13. Tinglong Dai & Mustafa Akan & Sridhar Tayur, 2017. "Imaging Room and Beyond: The Underlying Economics Behind Physicians’ Test-Ordering Behavior in Outpatient Services," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 99-113, February.
    14. Diwas S. KC & Bradley R. Staats & Maryam Kouchaki & Francesca Gino, 2020. "Task Selection and Workload: A Focus on Completing Easy Tasks Hurts Performance," Management Science, INFORMS, vol. 66(10), pages 4397-4416, October.
    15. Tinglong Dai & Shubhranshu Singh, 2020. "Conspicuous by Its Absence: Diagnostic Expert Testing Under Uncertainty," Marketing Science, INFORMS, vol. 39(3), pages 540-563, May.
    16. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    17. Ying Xu & Alan Scheller-Wolf & Katia Sycara, 2015. "The Benefit of Introducing Variability in Single-Server Queues with Application to Quality-Based Service Domains," Operations Research, INFORMS, vol. 63(1), pages 233-246, February.
    18. Jinsheng Chen & Jing Dong & Pengyi Shi, 2020. "A survey on skill-based routing with applications to service operations management," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 53-82, October.
    19. Mariam K. Atkinson & Soroush Saghafian, 2023. "Who should see the patient? on deviations from preferred patient-provider assignments in hospitals," Health Care Management Science, Springer, vol. 26(2), pages 165-199, June.
    20. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:1:p:172-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.