IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v73y2011i5p691-704.html
   My bibliography  Save this article

HEGY Tests in the Presence of Moving Averages

Author

Listed:
  • Tomás Del Barrio Castro
  • Denise R. Osborn

Abstract

We analyze the asymptotic distributions associated with the seasonal unit root tests of the Hylleberg et al. (1990) procedure for quarterly data when the innovations follow a moving average process. Although both the t- and F-type tests suffer from scale and shift effects compared with the presumed null distributions when a fixed order of autoregressive augmentation is applied, these effects disappear when the order of augmentation is sufficiently large. However, as found by Burridge and Taylor (2001) for the autoregressive case, individual t-ratio tests at the the semi-annual frequency are not pivotal even with high orders of augmentation, although the corresponding joint F-type statistic is pivotal. Monte Carlo simulations verify the importance of the order of augmentation for finite samples generated by seasonally integrated moving average processes.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Tomás Del Barrio Castro & Denise R. Osborn, 2011. "HEGY Tests in the Presence of Moving Averages," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 691-704, October.
  • Handle: RePEc:bla:obuest:v:73:y:2011:i:5:p:691-704
    DOI: j.1468-0084.2011.00633.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0084.2011.00633.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1468-0084.2011.00633.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. del Barrio Castro, Tomas, 2006. "On the performance of the DHF tests against nonstationary alternatives," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 291-297, February.
    2. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    3. Castro, Tomas del Barrio & Osborn, Denise R., 2008. "Testing For Seasonal Unit Roots In Periodic Integrated Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1093-1129, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arbués, Ignacio & Ledo, Ramiro & Matilla-García, Mariano, 2016. "Automatic identification of general vector error correction models," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-41.
    2. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    3. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    4. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    5. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    2. Ghassen El Montasser, 2011. "The overall seasonal integration tests under non-stationary alternatives: A methodological note," EERI Research Paper Series EERI_RP_2011_06, Economics and Econometrics Research Institute (EERI), Brussels.
    3. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    4. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    5. Zou, Nan & Politis, Dimitris N., 2021. "Bootstrap seasonal unit root test under periodic variation," Econometrics and Statistics, Elsevier, vol. 19(C), pages 1-21.
    6. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    7. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.
    8. Erten, Irem & Okay, Nesrin, 2012. "Re-examining Turkey's trade deficit with structural breaks: Evidence from 1989-2011," MPRA Paper 56191, University Library of Munich, Germany.
    9. del Barrio Castro Tomás & Osborn Denise R, 2011. "Nonparametric Tests for Periodic Integration," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-35, February.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:73:y:2011:i:5:p:691-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.