IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v6y1996i1p53-88.html
   My bibliography  Save this article

Pricing Callable Bonds By Means Of Green'S Function1

Author

Listed:
  • Hans‐Jürg Büttler
  • Jorg Waldvogel

Abstract

This paper derives a closed‐form solutin for the price of the European and semi‐Amirican callable bond for two popular one‐factor models of the term structure of interest rates which have been proposed by Vasicek as well as Cox, Ingersoll, and Ross. the price is derived by means of repeated use of Green's function, which, in turn, is derived from a series solution of the partial differential equation to value a discount bond. the boundary conditions which lead to the well‐known formulae for the price of a discount bond are also identified. the algorithm to implement the explicit solution relies on numerical quadrature involving Green's function. It offers both higher accuracy and higher speed of computation than finite difference methods, which suffer from numerical instabilites due to discontinuous boundary values. For suitably small time steps, the proposed algorithm can also be applied to American callable bonds or to any American‐type option with Green's function being explicitly known.

Suggested Citation

  • Hans‐Jürg Büttler & Jorg Waldvogel, 1996. "Pricing Callable Bonds By Means Of Green'S Function1," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 53-88, January.
  • Handle: RePEc:bla:mathfi:v:6:y:1996:i:1:p:53-88
    DOI: 10.1111/j.1467-9965.1996.tb00112.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.1996.tb00112.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.1996.tb00112.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barone-Adesi, Giovanni & Bermudez, Ana & Hatgioannides, John, 2003. "Two-factor convertible bonds valuation using the method of characteristics/finite elements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1801-1831, August.
    2. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    3. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    4. Marie-Claude Vachon & Anne Mackay, 2024. "A Unifying Approach for the Pricing of Debt Securities," Papers 2403.06303, arXiv.org, revised Oct 2024.
    5. Dmitry Muravey, 2014. "Interest rate models and Whittaker functions," Papers 1405.2459, arXiv.org.
    6. Werner Hürlimann, 2012. "Valuation of fixed and variable rate mortgages: binomial tree versus analytical approximations," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 35(2), pages 171-202, November.
    7. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    8. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:6:y:1996:i:1:p:53-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.