IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i3p444-462.html
   My bibliography  Save this article

Granger causality tests based on reduced variable information

Author

Listed:
  • Neng‐Fang Tseng
  • Ying‐Chao Hung
  • Junji Nakano

Abstract

Granger causality is a classical and important technique for measuring predictability from one group of time series to another by incorporating information of the variables described by a full vector autoregressive (VAR) process. However, in some applications economic forecasts need to be made based on information provided merely by a portion of variates (e.g., removal of a listed stock due to halting, suspension or delisting). This requires a new formulation of forecast based on an embedded subprocess of VAR, whose theoretical properties are often difficult to obtain. To avoid the issue of identifying the VAR subprocess, we propose a computation‐based approach so that sophisticated predictions can be made by utilizing a reduced variable information set estimated from sampled data. Such estimated information set allows us to develop a suitable statistical hypothesis testing procedure for characterizing all designated Granger causal relationships, as well as a useful graphical tool for presenting the causal structure over the prediction horizon. Finally, simulated data and a real example from the stock markets are used to illustrate the proposed method.

Suggested Citation

  • Neng‐Fang Tseng & Ying‐Chao Hung & Junji Nakano, 2024. "Granger causality tests based on reduced variable information," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(3), pages 444-462, May.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:444-462
    DOI: 10.1111/jtsa.12720
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12720
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    3. Hsiao, Cheng, 1982. "Autoregressive modeling and causal ordering of economic variables," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 243-259, November.
    4. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.
    5. Eichler, Michael, 2007. "Granger causality and path diagrams for multivariate time series," Journal of Econometrics, Elsevier, vol. 137(2), pages 334-353, April.
    6. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    7. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    8. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    9. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    10. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    11. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    12. Maggie Copeland & Tom Copeland, 1998. "Leads, Lags, and Trading in Global Markets," Financial Analysts Journal, Taylor & Francis Journals, vol. 54(4), pages 70-80, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apergis, Nicholas & Bouras, Christos & Christou, Christina & Hassapis, Christis, 2018. "Multi-horizon wealth effects across the G7 economies," Economic Modelling, Elsevier, vol. 72(C), pages 165-176.
    2. Ralf Brüggemann & Christian Kascha, 2017. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2017-06, Department of Economics, University of Konstanz.
    3. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    4. Dominik Bertsche & Ralf Brüggemann & Christian Kascha, 2023. "Directed graphs and variable selection in large vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 223-246, March.
    5. Alessio Moneta & Peter Spirtes, 2005. "Graph-Based Search Procedure for Vector Autoregressive Models," LEM Papers Series 2005/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Alessio Moneta, 2005. "Causality in macroeconometrics: some considerations about reductionism and realism," Journal of Economic Methodology, Taylor & Francis Journals, vol. 12(3), pages 433-453.
    7. Thomas Brenner & Matthias Duschl, 2015. "Causal dynamic effects in regional systems of technological activities: a SVAR approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(1), pages 103-130, October.
    8. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
    9. Jonathan B. Hill, 2005. "Causation Delays and Causal Neutralization up to Three Steps Ahead: The Money-Output Relationship Revisited," Econometrics 0503016, University Library of Munich, Germany, revised 23 Mar 2005.
    10. Cordoni, Francesco & Dorémus, Nicolas & Moneta, Alessio, 2024. "Identification of vector autoregressive models with nonlinear contemporaneous structure," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    11. Wang, Zijun, 2012. "The causal structure of bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 93-102.
    12. Yang, Jian & Bessler, David A., 2008. "Contagion around the October 1987 stock market crash," European Journal of Operational Research, Elsevier, vol. 184(1), pages 291-310, January.
    13. Oscar Jorda, 2003. "Model-Free Impulse Responses," Working Papers 305, University of California, Davis, Department of Economics.
    14. Yin, Libo & Ma, Xiyuan, 2018. "Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 434-453.
    15. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    16. Xu, Xiaojie, 2014. "Causality and Price Discovery in U.S. Corn Markets: An Application of Error Correction Modeling and Directed Acyclic Graphs," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169806, Agricultural and Applied Economics Association.
    17. Xiaojie Xu, 2017. "Contemporaneous causal orderings of US corn cash prices through directed acyclic graphs," Empirical Economics, Springer, vol. 52(2), pages 731-758, March.
    18. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    19. Vitale, Jeffrey D. & Bessler, David A., 2006. "The 2004 Niger Food Crisis: What Role Can Price Discovery Play in Famine Early Warning Systems?," 2006 Annual meeting, July 23-26, Long Beach, CA 21316, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Olagunju, Kehinde Oluseyi & Feng, Siyi & Patton, Myles, 2021. "Dynamic relationships among phosphate rock, fertilisers and agricultural commodity markets: Evidence from a vector error correction model and Directed Acyclic Graphs," Resources Policy, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:3:p:444-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.