IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2005-14.html
   My bibliography  Save this paper

Graph-Based Search Procedure for Vector Autoregressive Models

Author

Listed:
  • Alessio Moneta
  • Peter Spirtes

Abstract

Vector Autoregressions (VARs) are a class of time series models commonly used in econometrics to study the dynamic effect of exogenous shocks to the economy. While the estimation of a VAR is straightforward, there is a problem of finding the transformation of the estimated model consistent with the causal relations among the contemporaneous variables. Such problem, which is a version of what is called in econometrics “the problem of identification,” is faced in this paper using a semi-automated search procedure. The unobserved causal relations of the structural form, to be identified, are represented by a directed graph. Discovery algorithms are developed to infer features of the causal graph from tests on vanishing partial correlations among the VAR residuals. Such tests cannot be based on the usual tests of conditional independence, because of sampling problems due to the time series nature of the data. This paper proposes consistent tests on vanishing partial correlations based on the asymptotic distribution of the estimated VAR residuals. Two different types of search algorithm are considered. A first algorithm restricts the analysis to direct causation among the contemporaneous variables, a second algorithm allows the possibility of cycles (feedback loops) and common shocks among contemporaneous variables. Recovering the causal structure allows a reliable transformation of the estimated vector autoregressive model which is very useful for macroeconomic empirical investigations, such as comparing the effects of different shocks (real vs. nominal) on the economy and finding a measure of the monetary policy shock.

Suggested Citation

  • Alessio Moneta & Peter Spirtes, 2005. "Graph-Based Search Procedure for Vector Autoregressive Models," LEM Papers Series 2005/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2005/14
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2005-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessio Moneta, 2003. "Graphical Models for Structural Vector Autoregressions," LEM Papers Series 2003/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Glymour, Clark & Spirtes, Peter, 1988. "Latent variables, causal models and overidentifying constraints," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 175-198.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    5. Michael S. Haigh & David A. Bessler, 2004. "Causality and Price Discovery: An Application of Directed Acyclic Graphs," The Journal of Business, University of Chicago Press, vol. 77(4), pages 1099-1121, October.
    6. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    7. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
    8. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    9. Marco Reale & Granville Tunnicliffe Wilson, 2001. "Identification of vector AR models with recursive structural errors using conditional independence graphs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 49-65, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Moneta, 2008. "Graphical causal models and VARs: an empirical assessment of the real business cycles hypothesis," Empirical Economics, Springer, vol. 35(2), pages 275-300, September.
    2. Alessio Moneta, 2003. "Graphical Models for Structural Vector Autoregressions," LEM Papers Series 2003/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Xiaojie Xu, 2017. "Contemporaneous causal orderings of US corn cash prices through directed acyclic graphs," Empirical Economics, Springer, vol. 52(2), pages 731-758, March.
    4. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    5. Aramayis Dallakyan, 2021. "Nonparanormal Structural VAR for Non-Gaussian Data," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1093-1113, April.
    6. Alessio Moneta, 2005. "Causality in macroeconometrics: some considerations about reductionism and realism," Journal of Economic Methodology, Taylor & Francis Journals, vol. 12(3), pages 433-453.
    7. Wang, Zijun, 2012. "The causal structure of bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 93-102.
    8. Yang, Jian & Bessler, David A., 2008. "Contagion around the October 1987 stock market crash," European Journal of Operational Research, Elsevier, vol. 184(1), pages 291-310, January.
    9. Xu, Xiaojie, 2014. "Causality and Price Discovery in U.S. Corn Markets: An Application of Error Correction Modeling and Directed Acyclic Graphs," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169806, Agricultural and Applied Economics Association.
    10. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2012. "Bayesian Graphical Models for Structural Vector Autoregressive Processes," Working Papers 2012:36, Department of Economics, University of Venice "Ca' Foscari".
    11. Jin Zhang & David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, , vol. 37(1_suppl), pages 29-54, January.
    12. Vitale, Jeffrey D. & Bessler, David A., 2006. "The 2004 Niger Food Crisis: What Role Can Price Discovery Play in Famine Early Warning Systems?," 2006 Annual meeting, July 23-26, Long Beach, CA 21316, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Olagunju, Kehinde Oluseyi & Feng, Siyi & Patton, Myles, 2021. "Dynamic relationships among phosphate rock, fertilisers and agricultural commodity markets: Evidence from a vector error correction model and Directed Acyclic Graphs," Resources Policy, Elsevier, vol. 74(C).
    14. Lima, Elcyon Caiado & Maka, Alexis & Céspedes, Brisne, 2008. "Monetary Policy, Inflation and the Level of Economic Activity in Brazil After the Real Plan: Stylized Facts from SVAR Models," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 62(2), October.
    15. Yu, Tun-Hsiang (Edward) & Bessler, David A. & Fuller, Stephen W., 2006. "Cointegration and Causality Analysis of World Vegetable Oil and Crude Oil Prices," 2006 Annual meeting, July 23-26, Long Beach, CA 21439, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Phiromswad, Piyachart, 2015. "Measuring monetary policy with empirically grounded restrictions: An application to Thailand," Journal of Asian Economics, Elsevier, vol. 38(C), pages 104-113.
    17. Selva Demiralp & Kevin Hoover & Stephen Perez, 2014. "Still puzzling: evaluating the price puzzle in an empirically identified structural vector autoregression," Empirical Economics, Springer, vol. 46(2), pages 701-731, March.
    18. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    19. Yang, Jian & Guo, Hui & Wang, Zijun, 2006. "International transmission of inflation among G-7 countries: A data-determined VAR analysis," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2681-2700, October.
    20. Thomas Brenner & Matthias Duschl, 2015. "Causal dynamic effects in regional systems of technological activities: a SVAR approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(1), pages 103-130, October.

    More about this item

    Keywords

    VARs; Problem of Identification; Causal Graphs; Structural Shocks;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2005/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.