IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v29y2008i2p251-263.html
   My bibliography  Save this article

Robust Estimation For Periodic Autoregressive Time Series

Author

Listed:
  • Q. Shao

Abstract

. A robust estimation procedure for periodic autoregressive (PAR) time series is introduced. The asymptotic properties and the asymptotic relative efficiency are discussed by the estimating equation approach. The performance of the robust estimators for PAR time‐series models with order one is illustrated by a simulation study. The technique is applied to a real data analysis.

Suggested Citation

  • Q. Shao, 2008. "Robust Estimation For Periodic Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 251-263, March.
  • Handle: RePEc:bla:jtsera:v:29:y:2008:i:2:p:251-263
    DOI: 10.1111/j.1467-9892.2007.00555.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2007.00555.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2007.00555.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.
    2. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses, Philip Hans, 2013. "Data revisions and periodic properties of macroeconomic data," Economics Letters, Elsevier, vol. 120(2), pages 139-141.
    2. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    3. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    4. Niels Haldrup & Antonio Montañés & Andreu Sansó, 2004. "Testing for Additive Outliers in Seasonally Integrated Time Series," Economics Working Papers 2004-14, Department of Economics and Business Economics, Aarhus University.
    5. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    6. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    7. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    8. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    9. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
    10. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    11. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    12. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    13. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    14. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    15. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    16. Georgi N. Boshnakov & Bisher M. Iqelan, 2009. "Generation Of Time Series Models With Given Spectral Properties," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 349-368, May.
    17. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
    18. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    19. repec:kap:iaecre:v:13:y:2007:i:4:p:415-432 is not listed on IDEAS
    20. Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "Periodic stationarity of random coefficient periodic autoregressions," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 990-996, April.
    21. Pawel Maryniak & Rafal Weron, 2014. "Forecasting the occurrence of electricity price spikes in the UK power market," HSC Research Reports HSC/14/11, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    22. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:2:p:251-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.