IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i1p49-81.html
   My bibliography  Save this article

Robust and powerful serial correlation tests with new robust estimates in ARX models

Author

Listed:
  • Pierre Duchesne

Abstract

. We consider robust serial correlation tests in autoregressive models with exogenous variables (ARX). Since the least squares estimators are not robust when outliers are present, a new family of estimators is introduced, called residual autocovariances for ARX (RA‐ARX). They provide resistant estimators that are less sensible to abnormal observations in the output variable of the dynamic model. Such ‘bad’ observations could be due to unexpected phenomena such as economic crisis or equipment failure in engineering, among others. We show that the new robust estimators are consistent and we can consider robust and powerful tests of serial correlation in ARX models based on these estimators. The new one‐sided tests of serial correlation are obtained in extending Hong's (1996) approach in a framework resistant to outliers. They are based on a weighted sum of robust squared residual autocorrelations and on any robust and n1/2‐consistent estimators. Our approach generalizes Li's (1988) test statistic, that can be interpreted as a test using the truncated uniform kernel. However, many kernels deliver a higher power. This is confirmed in a simulation study, where we investigate the finite sample properties of the new robust serial correlation tests in comparison to some commonly used robust and non‐robust tests.

Suggested Citation

  • Pierre Duchesne, 2005. "Robust and powerful serial correlation tests with new robust estimates in ARX models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(1), pages 49-81, January.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:1:p:49-81
    DOI: 10.1111/j.1467-9892.2005.00390.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00390.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00390.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duchesne, Pierre & Roy, Roch, 2004. "On consistent testing for serial correlation of unknown form in vector time series models," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 148-180, April.
    2. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    3. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x, April.
    4. Yanyuan Ma & Marc G. Genton, 2000. "Highly Robust Estimation of the Autocovariance Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 663-684, November.
    5. Marta Garcia Ben & Elena J. Martinez & Victor J. Yohai, 1999. "Robust Estimation in Vector Autoregressive Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(4), pages 381-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Jennifer & Duchesne, Pierre, 2008. "On the power transformation of kernel-based tests for serial correlation in vector time series: Some finite sample results and a comparison with the bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4432-4457, May.
    2. Eichler, Michael, 2008. "Testing nonparametric and semiparametric hypotheses in vector stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 968-1009, May.
    3. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    4. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
    5. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    6. repec:wyi:journl:002087 is not listed on IDEAS
    7. Rocha, Roberto de Rezende, 1991. "Inflation and stabilization in Yugoslavia," Policy Research Working Paper Series 752, The World Bank.
    8. Yushu Li & Fredrik N. G. Andersson, 2021. "A simple wavelet-based test for serial correlation in panel data models," Empirical Economics, Springer, vol. 60(5), pages 2351-2363, May.
    9. Campos, Nauro & Nugent, Jeffrey B, 2000. "Investment and Instability," CEPR Discussion Papers 2609, C.E.P.R. Discussion Papers.
    10. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    11. Hidalgo, Javier, 2009. "Goodness of fit for lattice processes," Journal of Econometrics, Elsevier, vol. 151(2), pages 113-128, August.
    12. Torstein Bye & Alexandra Katz, 1995. "Returns to Publicly Owned Transport Infrastructure Investment . A Cost Function/Cost Share Approach for Norway, 1971-1991," Discussion Papers 154, Statistics Norway, Research Department.
    13. John T. Cuddington & Leila Dagher, 2015. "Estimating Short and Long-Run Demand Elasticities: A Primer with Energy-Sector Applications," The Energy Journal, , vol. 36(1), pages 185-210, January.
    14. Kuan Chung-Ming & Lee Wei-Ming, 2004. "A New Test of the Martingale Difference Hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-26, December.
    15. Steen, Frode & Sorgard, Lars, 1999. "Semicollusion in the Norwegian cement market," European Economic Review, Elsevier, vol. 43(9), pages 1775-1796, October.
    16. Seale, James L. & Solano, Alexis A., 2012. "The changing demand for energy in rich and poor countries over 25years," Energy Economics, Elsevier, vol. 34(6), pages 1834-1844.
    17. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    18. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    19. Sassi, M., 2013. "Child Nutritional Status in the Malawian District of Salima: A Capability Approach," 2013 Second Congress, June 6-7, 2013, Parma, Italy 149892, Italian Association of Agricultural and Applied Economics (AIEAA).
    20. Guy V. G. Stevens, 1995. "On the inverse of the covariance matrix in portfolio analysis," International Finance Discussion Papers 528, Board of Governors of the Federal Reserve System (U.S.).
    21. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:1:p:49-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.