IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v24y2003i3p269-282.html
   My bibliography  Save this article

Default Bayesian Priors for Regression Models with First‐Order Autoregressive Residuals

Author

Listed:
  • Malay Ghosh
  • Jungeun Heo

Abstract

. The objective of this paper is to develop default priors when the parameter of interest is the autocorrelation coefficient in normal regression models with first‐order autoregressive residuals. Jeffreys’ prior as well as reference priors are found. These priors are compared in the light of how accurately the coverage probabilities of Bayesian credible intervals match the corresponding frequentist coverage probabilities. It is found that the reference priors have a definite edge over Jeffreys’ prior in this respect. Also, the credible intervals based on these reference priors seem superior to similar intervals based on certain divergence measures.

Suggested Citation

  • Malay Ghosh & Jungeun Heo, 2003. "Default Bayesian Priors for Regression Models with First‐Order Autoregressive Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 269-282, May.
  • Handle: RePEc:bla:jtsera:v:24:y:2003:i:3:p:269-282
    DOI: 10.1111/1467-9892.00307
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00307
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:24:y:2003:i:3:p:269-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.