IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v83y2016i3p613-640.html
   My bibliography  Save this article

Estimation of Truncated Data Samples in Operational Risk Modeling

Author

Listed:
  • Bakhodir Ergashev
  • Konstantin Pavlikov
  • Stan Uryasev
  • Evangelos Sekeris

Abstract

No abstract is available for this item.

Suggested Citation

  • Bakhodir Ergashev & Konstantin Pavlikov & Stan Uryasev & Evangelos Sekeris, 2016. "Estimation of Truncated Data Samples in Operational Risk Modeling," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 613-640, September.
  • Handle: RePEc:bla:jrinsu:v:83:y:2016:i:3:p:613-640
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jori.12062
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    2. Pavel V. Shevchenko & Grigory Temnov, 2009. "Modeling operational risk data reported above a time-varying threshold," Papers 0904.4075, arXiv.org, revised Jul 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daoping Yu & Vytaras Brazauskas, 2017. "Model Uncertainty in Operational Risk Modeling Due to Data Truncation: A Single Risk Case," Risks, MDPI, vol. 5(3), pages 1-17, September.
    2. J. D. Opdyke, 2016. "Fast, Accurate, Straightforward Extreme Quantiles of Compound Loss Distributions," Papers 1610.03718, arXiv.org, revised Jul 2017.
    3. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    4. J. D. Opdyke, 2014. "Estimating Operational Risk Capital with Greater Accuracy, Precision, and Robustness," Papers 1406.0389, arXiv.org, revised Nov 2014.
    5. Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2020. "Risk Analysis through the Half-Normal Distribution," Mathematics, MDPI, vol. 8(11), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    2. Xu Zhao & Zhongxian Zhang & Weihu Cheng & Pengyue Zhang, 2019. "A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    3. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    4. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    5. Gareth W. Peters & Aaron D. Byrnes & Pavel V. Shevchenko, 2010. "Impact of Insurance for Operational Risk: Is it worthwhile to insure or be insured for severe losses?," Papers 1010.4406, arXiv.org, revised Nov 2010.
    6. Pavel V. Shevchenko & Xiaolin Luo, 2011. "Dependent default and recovery: MCMC study of downturn LGD credit risk model," Papers 1112.5766, arXiv.org.
    7. Paul Larsen, 2015. "Asyptotic Normality for Maximum Likelihood Estimation and Operational Risk," Papers 1508.02824, arXiv.org, revised Aug 2016.
    8. Wang, Zongrun & Wang, Wuchao & Chen, Xiaohong & Jin, Yanbo & Zhou, Yanju, 2012. "Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks," Economic Modelling, Elsevier, vol. 29(6), pages 2095-2103.
    9. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
    10. Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00790217, HAL.
    11. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    12. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    13. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    14. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    15. Xiaolin Luo & Pavel V. Shevchenko, 2010. "Markov chain Monte Carlo estimation of default and recovery: dependent via the latent systematic factor," Papers 1011.2827, arXiv.org, revised Oct 2014.
    16. Lina M Cortés & Juan F. Rendón & Javier Perote, 2021. "Determining the banking solvency risk in times of COVID-19 through Gram-Charlier expansions," Documentos de Trabajo de Valor Público 19593, Universidad EAFIT.
    17. Peter Mitic, 2017. "Conduct Risk - distribution models with very thin Tails," Papers 1705.06868, arXiv.org.
    18. Daoping Yu & Vytaras Brazauskas, 2017. "Model Uncertainty in Operational Risk Modeling Due to Data Truncation: A Single Risk Case," Risks, MDPI, vol. 5(3), pages 1-17, September.
    19. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    20. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:83:y:2016:i:3:p:613-640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.