IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v8y1959i2p65-75.html
   My bibliography  Save this article

Matching and Prediction on the Principle of Biological Classification

Author

Listed:
  • William A. Belson

Abstract

In this article Dr Belson describes a technique for matching population samples. This depends upon the combination of empirically developed predictors to give the best available predictive, or matching, composite. The underlying principle is quite distinct from that inherent in the multiple correlation method.

Suggested Citation

  • William A. Belson, 1959. "Matching and Prediction on the Principle of Biological Classification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 8(2), pages 65-75, June.
  • Handle: RePEc:bla:jorssc:v:8:y:1959:i:2:p:65-75
    DOI: 10.2307/2985543
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2985543
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2985543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    2. Piero Demetrio Falorsi & Salvatore Filiberti & Antonio Pavone, 2006. "The new strategy for the concise presentation of sampling errors in the Italian Structural Business Statistics Survey," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 243-265, August.
    3. Athanasios Anagnostis & Serafeim Moustakidis & Elpiniki Papageorgiou & Dionysis Bochtis, 2022. "A Hybrid Bimodal LSTM Architecture for Cascading Thermal Energy Storage Modelling," Energies, MDPI, vol. 15(6), pages 1-24, March.
    4. Piero Falorsi & Salvatore Filiberti & Antonio Pavone, 2006. "The new strategy for the concise presentation of sampling errors in the Italian Structural Business Statistics Survey," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 243-265, August.
    5. Benjamin M. Abdel-Karim & Nicolas Pfeuffer & Oliver Hinz, 2021. "Machine learning in information systems - a bibliographic review and open research issues," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 643-670, September.
    6. Sahar Ahmadzadeh & Tahmina Ajmal & Ramakrishnan Ramanathan & Yanqing Duan, 2023. "A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    7. Lanxi Li & Alan Woodley & Timothy Chappell, 2024. "Mapping Urban Floods via Spectral Indices and Machine Learning Algorithms," Sustainability, MDPI, vol. 16(6), pages 1-26, March.
    8. Bernard Dushimimana & Yvonne Wambui & Timothy Lubega & Patrick E. McSharry, 2020. "Use of Machine Learning Techniques to Create a Credit Score Model for Airtime Loans," JRFM, MDPI, vol. 13(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:8:y:1959:i:2:p:65-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.