IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i4p1044-1062.html
   My bibliography  Save this article

A unifying framework for flexible excess hazard modelling with applications in cancer epidemiology

Author

Listed:
  • Alessia Eletti
  • Giampiero Marra
  • Manuela Quaresma
  • Rosalba Radice
  • Francisco Javier Rubio

Abstract

Excess hazard modelling is one of the main tools in population‐based cancer survival research. Indeed, this setting allows for direct modelling of the survival due to cancer even in the absence of reliable information on the cause of death, which is common in population‐based cancer epidemiology studies. We propose a unifying link‐based additive modelling framework for the excess hazard that allows for the inclusion of many types of covariate effects, including spatial and time‐dependent effects, using any type of smoother, such as thin plate, cubic splines, tensor products and Markov random fields. In addition, this framework accounts for all types of censoring as well as left truncation. Estimation is conducted by using an efficient and stable penalized likelihood‐based algorithm whose empirical performance is evaluated through extensive simulation studies. Some theoretical and asymptotic results are discussed. Two case studies are presented using population‐based cancer data from patients diagnosed with breast (female), colon and lung cancers in England. The results support the presence of non‐linear and time‐dependent effects as well as spatial variation. The proposed approach is available in the R package GJRM.

Suggested Citation

  • Alessia Eletti & Giampiero Marra & Manuela Quaresma & Rosalba Radice & Francisco Javier Rubio, 2022. "A unifying framework for flexible excess hazard modelling with applications in cancer epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1044-1062, August.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:1044-1062
    DOI: 10.1111/rssc.12566
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12566
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathieu Fauvernier & Laurent Roche & Zoé Uhry & Laure Tron & Nadine Bossard & Laurent Remontet & and the Challenges in the Estimation of Net Survival Working Survival Group, 2019. "Multi‐dimensional penalized hazard model with continuous covariates: applications for studying trends and social inequalities in cancer survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1233-1257, November.
    2. Maja Pohar Perme & Janez Stare & Jacques Estève, 2012. "On Estimation in Relative Survival," Biometrics, The International Biometric Society, vol. 68(1), pages 113-120, March.
    3. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petti, Danilo & Eletti, Alessia & Marra, Giampiero & Radice, Rosalba, 2022. "Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marra, Giampiero & Farcomeni, Alessio & Radice, Rosalba, 2021. "Link-based survival additive models under mixed censoring to assess risks of hospital-acquired infections," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    3. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    4. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    5. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    6. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    7. Andrew Leroux & Junrui Di & Ekaterina Smirnova & Elizabeth J Mcguffey & Quy Cao & Elham Bayatmokhtari & Lucia Tabacu & Vadim Zipunnikov & Jacek K Urbanek & Ciprian Crainiceanu, 2019. "Organizing and Analyzing the Activity Data in NHANES," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 262-287, July.
    8. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    9. Stefano Cabras & J. D. Tena, 2023. "Implicit institutional incentives and individual decisions: Causal inference with deep learning models," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(6), pages 3739-3754, September.
    10. Hervé Cardot & Antonio Musolesi, 2018. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: the case of local development policies in France," SEEDS Working Papers 0718, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2018.
    11. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    12. Sun, Tianyu & Chand, Satish & Sharpe, Keiran, 2018. "Effect of aging on housing prices: evidence from a panel data," MPRA Paper 94418, University Library of Munich, Germany, revised 01 Mar 2019.
    13. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    14. Haiqing Hu & Pandu R. Tadikamalla, 2020. "When to launch a sales promotion for online fashion products? An empirical study," Electronic Commerce Research, Springer, vol. 20(4), pages 737-756, December.
    15. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    16. Stefano Cabras & J. James Reade & J.D. Tena, 2018. "Social Pressure or Rational Reactions to Incentives? A Historical Analysis of Reasons for Referee Bias in the Spanish Football," Working Papers 20189, University of Liverpool, Department of Economics.
    17. Anja M. Hahn & Konstantin A. Kholodilin & Sofie R. Waltl, 2020. "Forward to the Past: Short-Term Effects of the Rent Freeze in Berlin," Department of Economics Working Papers wuwp308, Vienna University of Economics and Business, Department of Economics.
    18. Simon N. Wood & Matteo Fasiolo, 2017. "A generalized Fellner‐Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models," Biometrics, The International Biometric Society, vol. 73(4), pages 1071-1081, December.
    19. Jie Min & Yili Hong & Caleb B. King & William Q. Meeker, 2022. "Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 987-1013, August.
    20. Stephan Kambach & Francesco Maria Sabatini & Fabio Attorre & Idoia Biurrun & Gerhard Boenisch & Gianmaria Bonari & Andraž Čarni & Maria Laura Carranza & Alessandro Chiarucci & Milan Chytrý & Jürgen De, 2023. "Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:1044-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.