Reducing the number of experiments required for modelling the hydrocracking process with kriging through Bayesian transfer learning
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12516
Download full text from publisher
References listed on IDEAS
- Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
- David Ginsbourger & Delphine Dupuy & Anca Badea & Laurent Carraro & Olivier Roustant, 2009. "A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 115-131, March.
- Tristan Launay & Anne Philippe & Sophie Lamarche, 2015. "Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 361-385, June.
- C. Helbert & D. Dupuy & L. Carraro, 2009. "Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 99-113, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
- Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
- Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Ehsan Mehdad & Jack P. C. Kleijnen, 2018.
"Efficient global optimisation for black-box simulation via sequential intrinsic Kriging,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 5e785713-146c-4e5b-b671-f, Tilburg University, School of Economics and Management.
- Mehdad, Ehsan & Kleijnen, J.P.C., 2015. "Efficient Global Optimization for Black-Box Simulation via Sequential Intrinsic Kriging," Discussion Paper 2015-042, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C. & Mehdad, E., 2014.
"Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039),"
Discussion Paper
2014-012, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Other publications TiSEM 8a096696-f700-4cbe-9474-c, Tilburg University, School of Economics and Management.
- G. Dosi & M. C. Pereira & M. E. Virgillito, 2018.
"On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis,"
Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
- Giovanni Dosi & Marcelo C. Pereira & Maria Enrica Virgillito, 2016. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," LEM Papers Series 2016/12, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Arvind Krishna & Huan Tran & Chaofan Huang & Rampi Ramprasad & V. Roshan Joseph, 2024. "Adaptive Exploration and Optimization of Materials Crystal Structures," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 68-83, April.
- Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
- Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015.
"Estimating the Variance of the Predictor in Stochastic Kriging,"
Other publications TiSEM
dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Discussion Paper 2015-041, Tilburg University, Center for Economic Research.
- Biewen, Martin & Kugler, Philipp, 2021.
"Two-stage least squares random forests with an application to Angrist and Evans (1998),"
Economics Letters, Elsevier, vol. 204(C).
- Biewen, Martin & Kugler, Philipp, 2020. "Two-Stage Least Squares Random Forests with an Application to Angrist and Evans (1998)," IZA Discussion Papers 13613, Institute of Labor Economics (IZA).
- Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2022. "A complexity view on the future of work. Meta-modelling exploration of the multi-sector K+S agent based model," LEM Papers Series 2022/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
- Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
- Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Mostafa Reisi Gahrooei & Hao Yan & Kamran Paynabar, 2020. "Comments on: On Active Learning Methods for Manifold Data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 38-41, March.
- Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
- Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1344-1364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.