IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i5p1344-1364.html
   My bibliography  Save this article

Reducing the number of experiments required for modelling the hydrocracking process with kriging through Bayesian transfer learning

Author

Listed:
  • Loïc Iapteff
  • Julien Jacques
  • Matthieu Rolland
  • Benoit Celse

Abstract

The objective is to improve the learning of a regression model of the hydrocracking process using a reduced number of observations. When a new catalyst is used for the hydrocracking process, a new model must be fitted. Generating new data is expensive and therefore it is advantageous to limit the amount of new data generation. Our idea is to use a second data set of measurements made on a process using an old catalyst. This second data set is large enough to fit performing models for the old catalyst. In this work, we use the knowledge from this old catalyst to learn a model on the new catalyst. This task is a transfer learning task. We show that the results are greatly improved with a Bayesian approach to transfer linear model and kriging model.

Suggested Citation

  • Loïc Iapteff & Julien Jacques & Matthieu Rolland & Benoit Celse, 2021. "Reducing the number of experiments required for modelling the hydrocracking process with kriging through Bayesian transfer learning," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1344-1364, November.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1344-1364
    DOI: 10.1111/rssc.12516
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12516
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    2. David Ginsbourger & Delphine Dupuy & Anca Badea & Laurent Carraro & Olivier Roustant, 2009. "A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 115-131, March.
    3. C. Helbert & D. Dupuy & L. Carraro, 2009. "Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(2), pages 99-113, March.
    4. Tristan Launay & Anne Philippe & Sophie Lamarche, 2015. "Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 361-385, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    2. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    4. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    5. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    6. Biewen, Martin & Kugler, Philipp, 2021. "Two-stage least squares random forests with an application to Angrist and Evans (1998)," Economics Letters, Elsevier, vol. 204(C).
    7. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    8. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    10. Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
    11. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    12. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    13. Leonardo Bargigli & Luca Riccetti & Alberto Russo & Mauro Gallegati, 2020. "Network calibration and metamodeling of a financial accelerator agent based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 413-440, April.
    14. Victor Picheny & Mickael Binois & Abderrahmane Habbal, 2019. "A Bayesian optimization approach to find Nash equilibria," Journal of Global Optimization, Springer, vol. 73(1), pages 171-192, January.
    15. Torossian, Léonard & Picheny, Victor & Faivre, Robert & Garivier, Aurélien, 2020. "A review on quantile regression for stochastic computer experiments," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Binois, M. & Ginsbourger, D. & Roustant, O., 2015. "Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 386-394.
    17. Kleijnen, Jack P.C. & Mehdad, E. & van Beers, W.C.M., 2012. "Convex and monotonic bootstrapped kriging," Other publications TiSEM 972e079d-0209-45bf-b25e-a, Tilburg University, School of Economics and Management.
    18. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    19. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    20. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1344-1364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.