IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v63y2014i2p211-237.html
   My bibliography  Save this article

Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity

Author

Listed:
  • Anders Skrondal
  • Sophia Rabe-Hesketh

Abstract

type="main" xml:id="rssc12023-abs-0001"> Distinguishing between longitudinal dependence due to the effects of previous responses on subsequent responses and dependence due to unobserved heterogeneity is important in many disciplines. For example, wheezing is an inflammatory reaction that may ‘remodel’ a child's airway structure and thereby affect the probability of future wheezing (state dependence). Alternatively, children could vary in their susceptibilities because of unobserved covariates such as genes (unobserved heterogeneity). For binary responses, distinguishing between state dependence and unobserved heterogeneity is typically accomplished by using dynamic/transition models that include both a lagged response and a random intercept. Naive maximum likelihood estimators can be severely inconsistent because of two kinds of endogeneity problem: lack of independence of the initial response and the random intercept (the initial conditions problem) and lack of independence of the covariates and the random intercept (the endogenous covariates problem). We clarify and unify previous work on handling these problems in the disconnected literatures of statistics and econometrics, suggest improved methods, investigate the asymptotic performance of competing methods and provide practical recommendations. The recommended methods are applied to longitudinal data on children's wheezing, where we investigate the extent of state dependence and unobserved heterogeneity and whether there is an effect of maternal smoking.

Suggested Citation

  • Anders Skrondal & Sophia Rabe-Hesketh, 2014. "Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 211-237, February.
  • Handle: RePEc:bla:jorssc:v:63:y:2014:i:2:p:211-237
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2014.63.issue-2
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bartolucci & Valentina Nigro, 2010. "A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n-Consistent Conditional Estimator," Econometrica, Econometric Society, vol. 78(2), pages 719-733, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauline Givord & Lionel Wilner, 2015. "When Does the Stepping‐Stone Work? Fixed‐Term Contracts Versus Temporary Agency Work in Changing Economic Conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 787-805, August.
    2. Lionel WILNER, 2019. "The Dynamics of Individual Happiness," Working Papers 2019-18, Center for Research in Economics and Statistics.
    3. Johannes S. Kunz & Kevin E. Staub & Rainer Winkelmann, 2021. "Predicting individual effects in fixed effects panel probit models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1109-1145, July.
    4. Lee Myoung-jae, 2015. "Panel conditional and multinomial logit with time-varying parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 317-337, June.
    5. Giulia Bettin & Riccardo Lucchetti, 2016. "Steady streams and sudden bursts: persistence patterns in remittance decisions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 29(1), pages 263-292, January.
    6. Brown, Sarah & Ghosh, Pulak & Taylor, Karl, 2014. "The existence and persistence of household financial hardship: A Bayesian multivariate dynamic logit framework," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 285-298.
    7. Soyoon Weon & David W. Rothwell, 2020. "Dynamics of Asset Poverty in South Korea," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(2), pages 639-657, July.
    8. cyrine hannafi & Christophe Muller, 2016. "The Poverty-Economic Growth-Health Triangle," EcoMod2016 9587, EcoMod.
    9. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    10. Mohammad Arshad Rahman & Angela Vossmeyer, 2019. "Estimation and Applications of Quantile Regression for Binary Longitudinal Data," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B, volume 40, pages 157-191, Emerald Group Publishing Limited.
    11. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.
    12. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    13. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    14. Miriam Beblo & Sven Schreiber, 2022. "Leisure and housing consumption after retirement: new evidence on the life-cycle hypothesis," Review of Economics of the Household, Springer, vol. 20(1), pages 305-330, March.
    15. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    16. Tata Subba Rao & Granville Tunnicliffe Wilson & Wei Gao & Wicher Bergsma & Qiwei Yao, 2017. "Estimation for Dynamic and Static Panel Probit Models with Large Individual Effects," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 266-284, March.
    17. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    18. Marco Cosconati & Alessandro Sembenelli, 2016. "Firm Subsidies and the Innovation Output: What Can We Learn by Looking at Multiple Investment Inputs?," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 2(1), pages 31-55, March.
    19. Riccardo (Jack) Lucchetti & Claudia Pigini, 2020. "Choice of solutions to the initial-conditions problem in dynamic panel probit models," Working Papers 2020:27, Department of Economics, University of Venice "Ca' Foscari".
    20. Roy-Chowdhury, V., 2022. "Self-Confidence and Motivated Memory Loss: Evidence from Schools," Cambridge Working Papers in Economics 2213, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:63:y:2014:i:2:p:211-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.