IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v57y2008i4p487-504.html
   My bibliography  Save this article

A Bayesian hierarchical model for photometric red shifts

Author

Listed:
  • Merrilee Hurn
  • Peter J. Green
  • Fahimah Al‐Awadhi

Abstract

Summary. The Sloan digital sky survey is an extremely large astronomical survey that is conducted with the intention of mapping more than a quarter of the sky. Among the data that it is generating are spectroscopic and photometric measurements, both containing information about the red shift of galaxies. The former are precise and easy to interpret but expensive to gather; the latter are far cheaper but correspondingly more difficult to interpret. Recently, Csabai and co‐workers have described various calibration techniques aiming to predict red shift from photometric measurements. We investigate what a structured Bayesian approach to the problem can add. In particular, we are interested in providing uncertainty bounds that are associated with the underlying red shifts and the classifications of the galaxies. We find that quite a generic statistical modelling approach, using for the most part standard model ingredients, can compete with much more specific custom‐made and highly tuned techniques that are already available in the astronomical literature.

Suggested Citation

  • Merrilee Hurn & Peter J. Green & Fahimah Al‐Awadhi, 2008. "A Bayesian hierarchical model for photometric red shifts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 487-504, September.
  • Handle: RePEc:bla:jorssc:v:57:y:2008:i:4:p:487-504
    DOI: 10.1111/j.1467-9876.2008.00621.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2008.00621.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2008.00621.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radu S. Stoica & Vicent J. Martínez & Enn Saar, 2007. "A three‐dimensional object point process for detection of cosmic filaments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 459-477, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loza-Reyes, E. & Hurn, M.A. & Robinson, A., 2014. "Classification of molecular sequence data using Bayesian phylogenetic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 81-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    2. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:57:y:2008:i:4:p:487-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.