IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v54y2005i5p817-830.html
   My bibliography  Save this article

Near‐optimal designs for dual channel microarray studies

Author

Listed:
  • Ernst Wit
  • Agostino Nobile
  • Raya Khanin

Abstract

Summary. Much biological and medical research employs microarray studies to monitor gene expression levels across a wide range of organisms and under many experimental conditions. Dual channel microarrays are a common platform and allow two samples to be measured simultaneously. A frequently used design uses a common reference sample to make conditions across different arrays comparable. Our aim is to formulate microarray experiments in the experimental design context and to use simulated annealing to search for near‐optimal designs. We identify a subclass of designs, the so‐called interwoven loop designs, that seems to have good optimality properties compared with the near‐optimal designs that are found by simulated annealing. Commonly used reference designs and dye swap designs are shown to be highly inefficient.

Suggested Citation

  • Ernst Wit & Agostino Nobile & Raya Khanin, 2005. "Near‐optimal designs for dual channel microarray studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(5), pages 817-830, November.
  • Handle: RePEc:bla:jorssc:v:54:y:2005:i:5:p:817-830
    DOI: 10.1111/j.1467-9876.2005.00519.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2005.00519.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2005.00519.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker, 2021. "Optimal block designs for experiments on networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 596-618, June.
    2. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    3. Lima Passos, Valéria & Tan, Frans E.S. & Berger, Martijn P.F., 2011. "Cost-efficiency considerations in the choice of a microarray platform for time course experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 944-954, January.
    4. R. A. Bailey, 2007. "Designs for two‐colour microarray experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 365-394, August.
    5. Ben M. Parker & Steven G. Gilmour & John Schormans, 2017. "Optimal design of experiments on connected units with application to social networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 455-480, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:54:y:2005:i:5:p:817-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.