IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i1p58-77.html
   My bibliography  Save this article

Statistical inferences of linear forms for noisy matrix completion

Author

Listed:
  • Dong Xia
  • Ming Yuan

Abstract

We introduce a flexible framework for making inferences about general linear forms of a large matrix based on noisy observations of a subset of its entries. In particular, under mild regularity conditions, we develop a universal procedure to construct asymptotically normal estimators of its linear forms through double‐sample debiasing and low‐rank projection whenever an entry‐wise consistent estimator of the matrix is available. These estimators allow us to subsequently construct confidence intervals for and test hypotheses about the linear forms. Our proposal was motivated by a careful perturbation analysis of the empirical singular spaces under the noisy matrix completion model which might be of independent interest. The practical merits of our proposed inference procedure are demonstrated on both simulated and real‐world data examples.

Suggested Citation

  • Dong Xia & Ming Yuan, 2021. "Statistical inferences of linear forms for noisy matrix completion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 58-77, February.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:58-77
    DOI: 10.1111/rssb.12400
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12400
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Tianxi Cai & T. Tony Cai & Anru Zhang, 2016. "Structured Matrix Completion with Applications to Genomic Data Integration," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 621-633, April.
    3. Minsker, Stanislav, 2017. "On some extensions of Bernstein’s inequality for self-adjoint operators," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 111-119.
    4. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Jungjun & Kwon, Hyukjun & Liao, Yuan, 2024. "Inference for low-rank completion without sample splitting with application to treatment effect estimation," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    3. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Completion without Sample Splitting with Application to Treatment Effect Estimation," Papers 2307.16370, arXiv.org.
    4. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Models without Estimating the Rank," Papers 2311.16440, arXiv.org, revised Oct 2024.
    5. Jungjun Choi & Ming Yuan, 2023. "Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models," Papers 2308.02364, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    3. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    4. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    5. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    6. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    7. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    8. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    9. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    10. Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
    11. Qingliang Fan & Zijian Guo & Ziwei Mei & Cun-Hui Zhang, 2023. "Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity," Papers 2310.08063, arXiv.org, revised Jun 2024.
    12. Victor Chernozhukov & Chen Huang & Weining Wang, 2021. "Uniform Inference on High-dimensional Spatial Panel Networks," Papers 2105.07424, arXiv.org, revised Sep 2023.
    13. Xingyu Chen & Lin Liu & Rajarshi Mukherjee, 2024. "Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics," Papers 2408.06103, arXiv.org.
    14. Li, Lexin & Shi, Chengchun & Guo, Tengfei & Jagust, William J., 2022. "Sequential pathway inference for multimodal neuroimaging analysis," LSE Research Online Documents on Economics 111904, London School of Economics and Political Science, LSE Library.
    15. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    16. Chen Qiu & Taisuke Otsu, 2022. "Information theoretic approach to high‐dimensional multiplicative models: Stochastic discount factor and treatment effect," Quantitative Economics, Econometric Society, vol. 13(1), pages 63-94, January.
    17. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    18. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
    19. Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.
    20. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:58-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.