IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/111904.html
   My bibliography  Save this paper

Sequential pathway inference for multimodal neuroimaging analysis

Author

Listed:
  • Li, Lexin
  • Shi, Chengchun
  • Guo, Tengfei
  • Jagust, William J.

Abstract

Motivated by a multimodal neuroimaging study for Alzheimer's disease, in this article, we study the inference problem, that is, hypothesis testing, of sequential mediation analysis. The existing sequential mediation solutions mostly focus on sparse estimation, while hypothesis testing is an utterly different and more challenging problem. Meanwhile, the few mediation testing solutions often ignore the potential dependency among the mediators or cannot be applied to the sequential problem directly. We propose a statistical inference procedure to test mediation pathways when there are sequentially ordered multiple data modalities and each modality involves multiple mediators. We allow the mediators to be conditionally dependent and the number of mediators within each modality to diverge with the sample size. We produce the explicit significance quantification and establish theoretical guarantees in terms of asymptotic size, power, and false discovery control. We demonstrate the efficacy of the method through both simulations and an application to a multimodal neuroimaging pathway analysis of Alzheimer's disease.

Suggested Citation

  • Li, Lexin & Shi, Chengchun & Guo, Tengfei & Jagust, William J., 2022. "Sequential pathway inference for multimodal neuroimaging analysis," LSE Research Online Documents on Economics 111904, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:111904
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/111904/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Yiping Yuan & Xiaotong Shen & Wei Pan & Zizhuo Wang, 2019. "Constrained likelihood for reconstructing a directed acyclic Gaussian graph," Biometrika, Biometrika Trust, vol. 106(1), pages 109-125.
    3. J. Peters & P. Bühlmann, 2014. "Identifiability of Gaussian structural equation models with equal error variances," Biometrika, Biometrika Trust, vol. 101(1), pages 219-228.
    4. Shi, Chengchun & Li, Lexin, 2022. "Testing mediation effects using logic of Boolean matrices," LSE Research Online Documents on Economics 108881, London School of Economics and Political Science, LSE Library.
    5. Yen-Tsung Huang & Wen-Chi Pan, 2016. "Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators," Biometrics, The International Biometric Society, vol. 72(2), pages 402-413, June.
    6. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Chengchun & Li, Lexin, 2022. "Testing mediation effects using logic of Boolean matrices," LSE Research Online Documents on Economics 108881, London School of Economics and Political Science, LSE Library.
    2. Haoyu Wei & Hengrui Cai & Chengchun Shi & Rui Song, 2024. "On Efficient Inference of Causal Effects with Multiple Mediators," Papers 2401.05517, arXiv.org.
    3. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    4. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    5. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    6. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    7. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    8. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    9. Qingliang Fan & Zijian Guo & Ziwei Mei & Cun-Hui Zhang, 2023. "Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity," Papers 2310.08063, arXiv.org, revised Jun 2024.
    10. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    11. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    12. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
    15. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2020. "Ill-posed estimation in high-dimensional models with instrumental variables," Journal of Econometrics, Elsevier, vol. 219(1), pages 171-200.
    16. Philipp Bach & Sven Klaassen & Jannis Kueck & Martin Spindler, 2020. "Estimation and Uniform Inference in Sparse High-Dimensional Additive Models," Papers 2004.01623, arXiv.org, revised Apr 2024.
    17. Qi Zhang, 2022. "High-Dimensional Mediation Analysis with Applications to Causal Gene Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 432-451, December.
    18. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
    19. Yiyan Huang & Cheuk Hang Leung & Qi Wu & Xing Yan, 2021. "Robust Orthogonal Machine Learning of Treatment Effects," Papers 2103.11869, arXiv.org, revised Dec 2022.
    20. Jana Janková & Rajen D. Shah & Peter Bühlmann & Richard J. Samworth, 2020. "Goodness‐of‐fit testing in high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 773-795, July.

    More about this item

    Keywords

    Alzheimer’s disease; Boolean matrix; directed acyclic graph; high-dimensional inference; mediation analysis; multimodal neuroimaging analysis; Alzheimer's disease; boolean matrix; New Research Support Fund; CIF-2102227; R01AG034570; R01AG061303; R01AG062542;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:111904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.