IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i4p781-804.html
   My bibliography  Save this article

Dynamic shrinkage processes

Author

Listed:
  • Daniel R. Kowal
  • David S. Matteson
  • David Ruppert

Abstract

We propose a novel class of dynamic shrinkage processes for Bayesian time series and regression analysis. Building on a global–local framework of prior construction, in which continuous scale mixtures of Gaussian distributions are employed for both desirable shrinkage properties and computational tractability, we model dependence between the local scale parameters. The resulting processes inherit the desirable shrinkage behaviour of popular global–local priors, such as the horseshoe prior, but provide additional localized adaptivity, which is important for modelling time series data or regression functions with local features. We construct a computationally efficient Gibbs sampling algorithm based on a Pólya–gamma scale mixture representation of the process proposed. Using dynamic shrinkage processes, we develop a Bayesian trend filtering model that produces more accurate estimates and tighter posterior credible intervals than do competing methods, and we apply the model for irregular curve fitting of minute‐by‐minute Twitter central processor unit usage data. In addition, we develop an adaptive time varying parameter regression model to assess the efficacy of the Fama–French five‐factor asset pricing model with momentum added as a sixth factor. Our dynamic analysis of manufacturing and healthcare industry data shows that, with the exception of the market risk, no other risk factors are significant except for brief periods.

Suggested Citation

  • Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Dynamic shrinkage processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 781-804, September.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:4:p:781-804
    DOI: 10.1111/rssb.12325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12325
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    2. Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
    3. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    4. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    5. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
    6. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    7. Sifat, Imtiaz & Zarei, Alireza & Hosseini, Seyedmehdi & Bouri, Elie, 2022. "Interbank liquidity risk transmission to large emerging markets in crisis periods," International Review of Financial Analysis, Elsevier, vol. 82(C).
    8. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    9. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    10. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    11. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
    12. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.
    13. Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
    14. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    15. Florian Huber & Michael Pfarrhofer, 2021. "Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
    16. Hauzenberger , Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2024. "Bayesian Neural Networks for Macroeconomic Analysis," CEPR Discussion Papers 19381, C.E.P.R. Discussion Papers.
    17. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Papers 2020_21, Business School - Economics, University of Glasgow.
    18. Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
    19. Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
    20. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    21. Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
    22. Anindya Bhadra & Jyotishka Datta & Yunfan Li & Nicholas Polson, 2020. "Horseshoe Regularisation for Machine Learning in Complex and Deep Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 302-320, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:4:p:781-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.