IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i3p605-626.html
   My bibliography  Save this article

Linear manifold modelling of multivariate functional data

Author

Listed:
  • Jeng-Min Chiou
  • Hans-Georg Müller

Abstract

type="main" xml:id="rssb12038-abs-0001"> Multivariate functional data are increasingly encountered in data analysis, whereas statistical models for such data are not well developed yet. Motivated by a case-study where one aims to quantify the relationship between various longitudinally recorded behaviour intensities for Drosophila flies, we propose a functional linear manifold model. This model reflects the functional dependence between the components of multivariate random processes and is defined through data-determined linear combinations of the multivariate component trajectories, which are characterized by a set of varying-coefficient functions. The time varying linear relationships that govern the components of multivariate random functions yield insights about the underlying processes and also lead to noise-reduced representations of the multivariate component trajectories. The functional linear manifold model proposed is put to the task for an analysis of longitudinally observed behavioural patterns of flying, feeding, walking and resting over the lifespan of Drosophila flies and is also investigated in simulations.

Suggested Citation

  • Jeng-Min Chiou & Hans-Georg Müller, 2014. "Linear manifold modelling of multivariate functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 605-626, June.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:3:p:605-626
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.76.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    2. Jialiang Li & Yaguang Li & Tailen Hsing, 2022. "On functional processes with multiple discontinuities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 933-972, July.
    3. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    4. Pircalabelu, Eugen & Claeskens, Gerda, 2021. "Linear manifold modeling and graph estimation based on multivariate functional data with different coarseness scales," LIDAM Discussion Papers ISBA 2021032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Fangting Zhou & Kejun He & Kunbo Wang & Yanxun Xu & Yang Ni, 2023. "Functional Bayesian networks for discovering causality from multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3279-3293, December.
    6. Ruonan Li & Luo Xiao, 2023. "Latent factor model for multivariate functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3307-3318, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:3:p:605-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.