IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v75y2013i1p123-138.html
   My bibliography  Save this article

New local estimation procedure for a non-parametric regression function for longitudinal data

Author

Listed:
  • Weixin Yao
  • Runze Li

Abstract

No abstract is available for this item.

Suggested Citation

  • Weixin Yao & Runze Li, 2013. "New local estimation procedure for a non-parametric regression function for longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 123-138, January.
  • Handle: RePEc:bla:jorssb:v:75:y:2013:i:1:p:123-138
    DOI: 10.1111/rssb.2012.75.issue-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/10.1111/rssb.2012.75.issue-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1111/rssb.2012.75.issue-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shu & You, Jinhong & Lian, Heng, 2017. "Estimation and model identification of longitudinal data time-varying nonparametric models," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 116-136.
    2. Xu, Lin & Xiang, Sijia & Yao, Weixin, 2019. "Robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 397-411.
    3. Chaohui Guo & Hu Yang & Jing Lv, 2018. "Two step estimations for a single-index varying-coefficient model with longitudinal data," Statistical Papers, Springer, vol. 59(3), pages 957-983, September.
    4. Lv, Jing & Guo, Chaohui & Yang, Hu & Li, Yalian, 2017. "A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 129-144.
    5. Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
    6. Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.
    7. repec:hum:wpaper:sfb649dp2014-002 is not listed on IDEAS
    8. Wei, Honglei & Zhang, Hongfan & Jiang, Hui & Huang, Lei, 2022. "On the semi-varying coefficient dynamic panel data model with autocorrelated errors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    9. Zhao, Yan-Yong & Lin, Jin-Guan & Zhao, Jian-Qiang & Miao, Zhang-Xiao, 2022. "Estimation of semi-varying coefficient models for longitudinal data with irregular error structure," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    10. Shakhawat Hossain & Le An Lac, 2021. "Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 811-835, December.
    11. Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
    12. de Carvalho, Miguel & Martos, Gabriel, 2020. "Brexit: Tracking and disentangling the sentiment towards leaving the EU," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1128-1137.
    13. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
    14. Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
    15. Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.
    16. He, Heping & Severini, Thomas A., 2016. "A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 316-329.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:75:y:2013:i:1:p:123-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.