IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i2p281-294.html
   My bibliography  Save this article

Powerful goodness‐of‐fit tests based on the likelihood ratio

Author

Listed:
  • Jin Zhang

Abstract

Summary. A new approach of parameterization is proposed to construct a general goodness‐of‐fit test. It can not only generate traditional tests (including the Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling tests) but also produce new types of omnibus tests, which are generally much more powerful than the old ones.

Suggested Citation

  • Jin Zhang, 2002. "Powerful goodness‐of‐fit tests based on the likelihood ratio," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 281-294, May.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:281-294
    DOI: 10.1111/1467-9868.00337
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00337
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lykou, R. & Tsaklidis, G. & Papadimitriou, E., 2020. "Change point analysis on the Corinth Gulf (Greece) seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Jesse Frey, 2008. "An exact distribution-free one-sample test for equivalence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 739-750.
    3. Zhang, Jin & Wu, Yuehua, 2007. "k-Sample tests based on the likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4682-4691, May.
    4. Coin, Daniele, 2008. "A goodness-of-fit test for normality based on polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2185-2198, January.
    5. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
    6. J. I. Beltrán-Beltrán & F. J. O’Reilly, 2019. "On goodness of fit tests for the Poisson, negative binomial and binomial distributions," Statistical Papers, Springer, vol. 60(1), pages 1-18, February.
    7. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    8. M. Cockeran & S. G. Meintanis & L. Santana & J. S. Allison, 2021. "Goodness-of-fit testing of survival models in the presence of Type–II right censoring," Computational Statistics, Springer, vol. 36(2), pages 977-1010, June.
    9. Wolfgang Rolke & Cristian Gutierrez Gongora, 2021. "A chi-square goodness-of-fit test for continuous distributions against a known alternative," Computational Statistics, Springer, vol. 36(3), pages 1885-1900, September.
    10. Xu, Xingzhong & Ding, Xiaobo & Zhao, Shuran, 2009. "New goodness-of-fit tests based on fiducial empirical distribution function," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1132-1141, February.
    11. L. Ndwandwe & J. S. Allison & L. Santana & I. J. H. Visagie, 2023. "Testing for the Pareto type I distribution: a comparative study," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 215-256, August.
    12. J. S. Allison & L. Santana & N. Smit & I. J. H. Visagie, 2017. "An ‘apples to apples’ comparison of various tests for exponentiality," Computational Statistics, Springer, vol. 32(4), pages 1241-1283, December.
    13. Zhang, Jin & Wu, Yuehua, 2005. "Likelihood-ratio tests for normality," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 709-721, June.
    14. Jingjing Qu & Hon Keung Tony Ng & Chul Moon, 2024. "Empirical likelihood ratio tests for homogeneity of component lifetime distributions based on system lifetime data," Computational Statistics, Springer, vol. 39(6), pages 3007-3029, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:2:p:281-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.