IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v59y1997i1p173-189.html
   My bibliography  Save this article

Transformations for Smooth Regression Models with Multiplicative Errors

Author

Listed:
  • G. K. Eagleson
  • H. G. Müller

Abstract

We consider whether one should transform to estimate nonparametrically a regression curve sampled from data with a constant coefficient of variation, i.e. with multiplicative errors. Kernel‐based smoothing methods are used to provide curve estimates from the data both in the original units and after transformation. Comparisons are based on the mean‐squared error (MSE) or mean integrated squared error (MISE), calculated in the original units. Even when the data are generated by the simplest multiplicative error model, the asymptotically optimal MSE (or MISE) is surprisingly not always obtained by smoothing transformed data, but in many cases by directly smoothing the original data. Which method is optimal depends on both the regression curve and the distribution of the errors. Data‐based procedures which could be useful in choosing between transforming and not transforming a particular data set are discussed. The results are illustrated on simulated and real data.

Suggested Citation

  • G. K. Eagleson & H. G. Müller, 1997. "Transformations for Smooth Regression Models with Multiplicative Errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 173-189.
  • Handle: RePEc:bla:jorssb:v:59:y:1997:i:1:p:173-189
    DOI: 10.1111/1467-9868.00062
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00062
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Keilegom, Ingrid, 2013. "Discussion on: "An updated review of Goodness-of-Fit tests for regression models" (by W. Gonzales-Manteiga and R.M. Crujeiras)," LIDAM Discussion Papers ISBA 2013008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Dette, Holger & Wieczorek, Gabriele, 2007. "Testing for a constant coefficient of variation in nonparametric regression," Technical Reports 2007,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Escanciano, Juan Carlos & Pardo-Fernandez, Juan Carlos & Van Keilegom, Ingrid, 2015. "Asymptotic distribution-free tests for semiparametric regressions," LIDAM Discussion Papers ISBA 2015001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    5. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.
    6. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:59:y:1997:i:1:p:173-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.