IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v182y2019i2p623-645.html
   My bibliography  Save this article

Information‐anchored sensitivity analysis: theory and application

Author

Listed:
  • Suzie Cro
  • James R. Carpenter
  • Michael G. Kenward

Abstract

Analysis of longitudinal randomized clinical trials is frequently complicated because patients deviate from the protocol. Where such deviations are relevant for the estimand, we are typically required to make an untestable assumption about post‐deviation behaviour to perform our primary analysis and to estimate the treatment effect. In such settings, it is now widely recognized that we should follow this with sensitivity analyses to explore the robustness of our inferences to alternative assumptions about post‐deviation behaviour. Although there has been much work on how to conduct such sensitivity analyses, little attention has been given to the appropriate loss of information due to missing data within sensitivity analysis. We argue that more attention needs to be given to this issue, showing that it is quite possible for sensitivity analysis to decrease and increase the information about the treatment effect. To address this critical issue, we introduce the concept of information‐anchored sensitivity analysis. By this we mean sensitivity analyses in which the proportion of information about the treatment estimate lost because of missing data is the same as the proportion of information about the treatment estimate lost because of missing data in the primary analysis. We argue that this forms a transparent, practical starting point for interpretation of sensitivity analysis. We then derive results showing that, for longitudinal continuous data, a broad class of controlled and reference‐based sensitivity analyses performed by multiple imputation are information anchored. We illustrate the theory with simulations and an analysis of a peer review trial and then discuss our work in the context of other recent work in this area. Our results give a theoretical basis for the use of controlled multiple‐imputation procedures for sensitivity analysis.

Suggested Citation

  • Suzie Cro & James R. Carpenter & Michael G. Kenward, 2019. "Information‐anchored sensitivity analysis: theory and application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 623-645, February.
  • Handle: RePEc:bla:jorssa:v:182:y:2019:i:2:p:623-645
    DOI: 10.1111/rssa.12423
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12423
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Atkinson & Suzie Cro & James R. Carpenter & Michael G. Kenward, 2021. "Information anchored reference‐based sensitivity analysis for truncated normal data with application to survival analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 500-523, November.
    2. Yilong Zhang & Gregory Golm & Guanghan Liu, 2020. "A Likelihood-Based Approach for the Analysis of Longitudinal Clinical Trials with Return-to-Baseline Imputation," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 23-36, April.
    3. Daniel O. Scharfstein & Jon Steingrimsson & Aidan McDermott & Chenguang Wang & Souvik Ray & Aimee Campbell & Edward Nunes & Abigail Matthews, 2022. "Global sensitivity analysis of randomized trials with nonmonotone missing binary outcomes: Application to studies of substance use disorders," Biometrics, The International Biometric Society, vol. 78(2), pages 649-659, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:2:p:623-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.