IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v182y2019i1p305-321.html
   My bibliography  Save this article

Misspecification of multimodal random‐effect distributions in logistic mixed models for panel survey data

Author

Listed:
  • Louise Marquart
  • Michele Haynes

Abstract

Logistic mixed models for longitudinal binary data typically assume normally distributed random effects, which may be too restrictive if an underlying subpopulation structure exists. The paper illustrates the ease of implementing diagnostic tests and fitting random effects as a mixture of normal distributions to detect and address distributional misspecification of the random effects in a potential mover–stayer scenario. Methods are illustrated by using data from the Household, Income and Labour Dynamics in Australia panel survey. The robustness of the normality assumption to violations characterized by a three‐component mixture of normal distributions was assessed via a simulation study. Adverse inferential impact of incorrectly assuming normality was identified for parameters directly related to the random effects, resulting in biased estimates and poor coverage rates for confidence intervals. The results support the general robustness of fixed effect parameters to non‐extreme distributional violations of the random effects.

Suggested Citation

  • Louise Marquart & Michele Haynes, 2019. "Misspecification of multimodal random‐effect distributions in logistic mixed models for panel survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(1), pages 305-321, January.
  • Handle: RePEc:bla:jorssa:v:182:y:2019:i:1:p:305-321
    DOI: 10.1111/rssa.12385
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12385
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:182:y:2019:i:1:p:305-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.