A statistician plays darts
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Goller, 2023.
"Analysing a built-in advantage in asymmetric darts contests using causal machine learning,"
Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
- Goller, Daniel, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Economics Working Paper Series 2013, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Papers 2008.07165, arXiv.org.
- Martin B. Haugh & Chun Wang, 2022. "Play Like the Pros? Solving the Game of Darts as a Dynamic Zero-Sum Game," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2540-2551, September.
- Enzo Brox & Daniel Goller, 2024. "Tournaments, Contestant Heterogeneity and Performance," Papers 2401.05210, arXiv.org, revised Oct 2024.
- Marius Ötting & Roland Langrock & Christian Deutscher & Vianey Leos‐Barajas, 2020. "The hot hand in professional darts," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 565-580, February.
- Klein Teeselink, Bouke & Potter van Loon, Rogier J.D. & van den Assem, Martijn J. & van Dolder, Dennie, 2020.
"Incentives, performance and choking in darts,"
Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 38-52.
- Bouke Klein Teeselink & Rogier J. D. Potter van Loon & Martijn (M.J.) van den Assem & Dennie van Dolder, 2018. "Incentives, Performance and Choking in Darts," Tinbergen Institute Discussion Papers 18-101/IV, Tinbergen Institute, revised 30 Sep 2019.
- Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
More about this item
Keywords
EM algorithm ; Importance sampling ; Monte Carlo methods ; Statistics of games ;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:174:y:2011:i:1:p:213-226. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.