IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v159y1996i2p309-321.html
   My bibliography  Save this article

Monte Carlo Exact Tests for Square Contingency Tables

Author

Listed:
  • Peter W. F. Smith
  • Jonathan J. Forster
  • John W. McDonald

Abstract

Square contingency tables arise frequently in social research. Typically, many of the off‐diagonal cell counts are small because of the social processes involved. This causes concern about the validity of using asymptotic tests and an exact test should be considered. We develop Markov chain Monte Carlo methods for estimating the exact conditional p‐value for various complex log‐linear models that are useful for the analysis of square contingency tables. These methods are used to analyse a sparse 8×8 intermarriage table.

Suggested Citation

  • Peter W. F. Smith & Jonathan J. Forster & John W. McDonald, 1996. "Monte Carlo Exact Tests for Square Contingency Tables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(2), pages 309-321, March.
  • Handle: RePEc:bla:jorssa:v:159:y:1996:i:2:p:309-321
    DOI: 10.2307/2983177
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2983177
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2983177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Rapallo, 2005. "Algebraic exact inference for rater agreement models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 45-66, February.
    2. Krzysztof Malik & Anna Jasińska-Biliczak, 2018. "Innovations and Other Processes as Identifiers of Contemporary Trends in the Sustainable Development of SMEs: The Case of Emerging Regional Economies," Sustainability, MDPI, vol. 10(5), pages 1-17, April.
    3. Satoshi Aoki & Akimichi Takemura, 2008. "Minimal invariant Markov basis for sampling contingency tables with fixed marginals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 229-256, June.
    4. Kim, Sung-Ho & Choi, Hyemi & Lee, Sangjin, 2009. "Estimate-based goodness-of-fit test for large sparse multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1122-1131, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:159:y:1996:i:2:p:309-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.