IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v153y1990i3p287-312.html
   My bibliography  Save this article

Record Linkage: Statistical Models for Matching Computer Records

Author

Listed:
  • J. B. Copas
  • F. J. Hilton

Abstract

We wish to measure the evidence that a pair of records relates to the same, rather than different, individuals. The paper emphasizes statistical models which can be fitted to a file of record pairs known to be correctly matched, and then used to estimate likelihood ratios. A number of models are developed and applied to UK immigration statistics. The combination of likelihood ratios for possibly correlated record fields is discussed.

Suggested Citation

  • J. B. Copas & F. J. Hilton, 1990. "Record Linkage: Statistical Models for Matching Computer Records," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 287-312, May.
  • Handle: RePEc:bla:jorssa:v:153:y:1990:i:3:p:287-312
    DOI: 10.2307/2982975
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2982975
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2982975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debabrata Dey, 2003. "Record Matching in Data Warehouses: A Decision Model for Data Consolidation," Operations Research, INFORMS, vol. 51(2), pages 240-254, April.
    2. Bartolini, Fabio & Brunori, Gianluca & Coli, Alessandra & Landi, Chiara & Pacini, Barbara, 2015. "Assessing the Causal Effect of Decoupled Payments on farm labour in Tuscany Using Propensity Score Methods," 2015 Conference, August 9-14, 2015, Milan, Italy 211200, International Association of Agricultural Economists.
    3. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    4. Li‐Chun Zhang & Tiziana Tuoto, 2021. "Linkage‐data linear regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 522-547, April.
    5. Jixian Wang & Peter Donnan, 2002. "Adjusting for missing record linkage in outcome studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 873-884.
    6. Bruce D. Meyer & Nikolas Mittag, 2019. "Misreporting of Government Transfers: How Important Are Survey Design and Geography?," Southern Economic Journal, John Wiley & Sons, vol. 86(1), pages 230-253, July.
    7. Lee, Gyumin & Lee, Sungjun & Lee, Changyong, 2023. "Inventor–licensee matchmaking for university technology licensing: A fastText approach," Technovation, Elsevier, vol. 125(C).
    8. Francesco D. d’Ovidio & Paola Perchinunno & Laura Antonucci, 2021. "Data Integration Techniques for the Identification of Poverty Profiles," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 515-531, August.
    9. Oleg Seleznjev & Bernhard Thalheim, 2010. "Random Databases with Approximate Record Matching," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 63-89, March.
    10. Vo, Thanh Huan & Chauvet, Guillaume & Happe, André & Oger, Emmanuel & Paquelet, Stéphane & Garès, Valérie, 2023. "Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    11. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    12. Xinyi Lu & Mevin B. Hooten & Andee Kaplan & Jamie N. Womble & Michael R. Bower, 2022. "Improving Wildlife Population Inference Using Aerial Imagery and Entity Resolution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 364-381, June.
    13. Meyer, Bruce D. & Mittag, Nikolas, 2018. "Misreporting of Government Transfers: How Important Are Survey Design and Geography?," IZA Discussion Papers 12038, Institute of Labor Economics (IZA).
    14. Debabrata Dey & Sumit Sarkar & Prabuddha De, 1998. "A Probabilistic Decision Model for Entity Matching in Heterogeneous Databases," Management Science, INFORMS, vol. 44(10), pages 1379-1395, October.
    15. Perchinunno, Paola & Mongelli, Lucia & d’Ovidio, Francesco D., 2020. "Statistical matching techniques in order to plan interventions on socioeconomic weakness: An Italian case," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:153:y:1990:i:3:p:287-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.