IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v92y2024i2p263-283.html
   My bibliography  Save this article

On the Most Effective Use of Continuous Auxiliary Variables in Regression Estimation in Survey Sampling

Author

Listed:
  • Takis Merkouris

Abstract

Auxiliary variables with known population totals are extensively used in survey sampling to construct generalised regression (GR) estimators or optimal regression (OR) estimators of totals or means of study variables. This article explores the possibility of improving the efficiency of such estimators when continuous auxiliary variables are used in the regression estimation jointly with appropriate power functions of them, provided that the values of the auxiliary variables are known for all units in the population. The efficiency gain is determined analytically in the case of the OR estimator. A practical criterion for choosing the power functions that maximise the efficiency gain, involving the coefficient of determination in the regression fit of the study variable, is proposed for both the OR estimation and the more practicable, but generally less efficient, GR estimation. Furthermore, the effect of adding a power function of a continuous auxiliary variable in regression estimation is investigated when this variable is also used at the design stage. A simulation study shows that the joint use of a continuous auxiliary variable and a power function of it chosen according to the proposed criterion may improve considerably the efficiency of OR estimation, and much more the efficiency of GR estimation.

Suggested Citation

  • Takis Merkouris, 2024. "On the Most Effective Use of Continuous Auxiliary Variables in Regression Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 92(2), pages 263-283, August.
  • Handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:263-283
    DOI: 10.1111/insr.12561
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12561
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:263-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.