IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i3p1061-1077.html
   My bibliography  Save this article

Contributions of extended batch tests for assessing technical recyclability: A case study of low‐value battery flows

Author

Listed:
  • Paul Martin Mählitz
  • Nathalie Korf
  • Georgios Chryssos
  • Vera Susanne Rotter

Abstract

Good product recyclability is a prerequisite for the transition to a circular economy. However, today's product complexity and diversity in the urban mine result in heterogeneous and variable waste flows affecting process recycling efficiency (RE) and thus product recyclability. For batteries, waste flow composition and subsequent RE are determined by usage behavior, collection, and sorting into chemical battery subsystems. This study aims to demonstrate how extended batch tests (EBTs) can be used as a method to (a) determine battery‐specific RE and (b) derive recommendations for assessing and improving the recyclability of batteries. Three EBTs comprising extensive characterization methods were carried out with mixtures of zinc‐based (AZ) and lithium‐based (LIB) batteries. The results showed that 0.20–0.27 kg/kg of the input mass was lost through flue gas and not recyclable. The metal fraction (0.15–0.19 kg/kg) was easily recyclable, while the mineral fractions of LIBs posed challenges for recycling and recovery (RR) due to the high elemental heterogeneity and pollutants originating from individual battery subsystems. In total, 0.79 kg/kg of AZs was recyclable, whereas 0.52 kg/kg of LIBs and 0.58 kg/kg of AZLIBs (a mixture of both) were recyclable after further treatment. In conclusion, the study demonstrated how the EBT approach can be used to extend recyclability assessment by providing waste flow characteristics for comparison with output quality requirements, enabling assignment of battery‐specific RE and identification of poorly recyclable battery subsystems. Thus, the EBT approach can help improve and assess technical recyclability in the future.

Suggested Citation

  • Paul Martin Mählitz & Nathalie Korf & Georgios Chryssos & Vera Susanne Rotter, 2022. "Contributions of extended batch tests for assessing technical recyclability: A case study of low‐value battery flows," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1061-1077, June.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:1061-1077
    DOI: 10.1111/jiec.13250
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13250
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roland Geyer & Brandon Kuczenski & Trevor Zink & Ashley Henderson, 2016. "Common Misconceptions about Recycling," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1010-1017, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    2. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    3. Florian Lüdeke‐Freund & Stefan Gold & Nancy M. P. Bocken, 2019. "A Review and Typology of Circular Economy Business Model Patterns," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 36-61, February.
    4. Erik G. Hansen & Ferdinand Revellio, 2020. "Circular value creation architectures: Make, ally, buy, or laissez‐faire," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1250-1273, December.
    5. Sourabh Jain & Jury Gualandris, 2023. "When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 522-534, April.
    6. Piero Morseletto, 2020. "Restorative and regenerative: Exploring the concepts in the circular economy," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 763-773, August.
    7. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    8. Hottle, Troy A. & Bilec, Melissa M. & Landis, Amy E., 2017. "Biopolymer production and end of life comparisons using life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 295-306.
    9. Figge, Frank & Thorpe, Andrea Stevenson & Givry, Philippe & Canning, Louise & Franklin-Johnson, Elizabeth, 2018. "Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy," Ecological Economics, Elsevier, vol. 150(C), pages 297-306.
    10. Kunle Ibukun Olatayo & Paul T. Mativenga & Annlizé L. Marnewick, 2023. "Plastic value chain and performance metric framework for optimal recycling," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 601-623, April.
    11. Balint Horvath & Miriam Bahna & Csaba Fogarassy, 2019. "The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    12. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
    13. Edis Glogic & Guido Sonnemann & Steven B. Young, 2021. "Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    14. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    15. Nils Johansson & Joakim Krook, 2021. "How to handle the policy conflict between resource circulation and hazardous substances in the use of waste?," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 994-1008, August.
    16. Filippo Corsini & Marco Frey, 2023. "Exploring the development of environmentally sustainable products through reward-based crowdfunding," Electronic Commerce Research, Springer, vol. 23(2), pages 1183-1207, June.
    17. Christoph Helbig & Jonas Huether & Charlotte Joachimsthaler & Christian Lehmann & Simone Raatz & Andrea Thorenz & Martin Faulstich & Axel Tuma, 2022. "A terminology for downcycling," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1164-1174, August.
    18. Colin M. Rose & Dan Bergsagel & Thibault Dufresne & Evi Unubreme & Tianyao Lyu & Philippe Duffour & Julia A. Stegemann, 2018. "Cross-Laminated Secondary Timber: Experimental Testing and Modelling the Effect of Defects and Reduced Feedstock Properties," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    19. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:1061-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.