IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i1p107-120.html
   My bibliography  Save this article

PIOT‐Hub ‐ A collaborative cloud tool for generation of physical input–output tables using mechanistic engineering models

Author

Listed:
  • Venkata Sai Gargeya Vunnava
  • Jaewoo Shin
  • Lan Zhao
  • Shweta Singh

Abstract

Mapping material flows in an economy is crucial to identifying strategies for resource management toward lowering the waste and environmental impacts of society, a key objective of research in industrial ecology. However, constructing models for mapping material flows at a sectoral level, such as in physical input–output tables (PIOTs) at highly disaggregated levels, is tedious and relies on a large amount of empirical data. To overcome this challenge, a novel collaborative cloud platform PIOT‐Hub is developed in this work. This platform utilizes a Python‐based simulation system for extracting material flow data from mechanistic models, thus semi‐automating the generation of PIOTs. The simulation system implements a bottom‐up approach of utilizing scaled engineering models to generate physical supply tables (PSTs) and physical use tables (PUTs) which are converted to PIOTs (described in (Vunnava & Singh, 2021)). Mechanistic models can be uploaded by users for sectors on PIOT‐Hub to develop PIOTs for any region. Both models and resulting PST/PUT/PIOTs can be shared with other users utilizing the collaborative platform. The automation and sharing features provided by PIOT‐Hub will help to significantly reduce the time required to develop PIOT and improve the reproducibility/continuity of PIOT generation, thus allowing the study of the changing nature of material flows in regional economy. In this paper, we describe the simulation system MFDES and PIOT‐Hub architecture/functionality through a demo example for creating PIOT in agro‐based sectors for Illinois. Future work includes scaling up the cloud infrastructure for large scale PIOT generation and enhancing the tool compatibility for different sectors in economy.

Suggested Citation

  • Venkata Sai Gargeya Vunnava & Jaewoo Shin & Lan Zhao & Shweta Singh, 2022. "PIOT‐Hub ‐ A collaborative cloud tool for generation of physical input–output tables using mechanistic engineering models," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 107-120, February.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:1:p:107-120
    DOI: 10.1111/jiec.13204
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13204
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. Vittorio Nicolardi, 2013. "Simultaneously Balancing Supply--Use Tables At Current And Constant Prices: A New Procedure," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 409-434, December.
    3. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    4. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    5. Stefano Merciai & Jannick Schmidt, 2018. "Methodology for the Construction of Global Multi†Regional Hybrid Supply and Use Tables for the EXIOBASE v3 Database," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 516-531, June.
    6. Michael Stanger, 2018. "An Algorithm to Balance Supply and Use Tables," IMF Technical Notes and Manuals 2018/003, International Monetary Fund.
    7. Martin C. Serpell, 2018. "Incorporating data quality improvement into supply–use table balancing," Economic Systems Research, Taylor & Francis Journals, vol. 30(2), pages 271-288, April.
    8. Franco Donati & Sidney Niccolson & Arjan de Koning & Bart Daniels & Maarten Christis & Katrien Boonen & Theo Geerken & João F. D. Rodrigues & Arnold Tukker, 2021. "Modeling the circular economy in environmentally extended input–output: A web application," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 36-50, February.
    9. Futu Faturay & Ya-Yen Sun & Erik Dietzenbacher & Arunima Malik & Arne Geschke & Manfred Lenzen, 2020. "Using virtual laboratories for disaster analysis – a case study of Taiwan," Economic Systems Research, Taylor & Francis Journals, vol. 32(1), pages 58-83, January.
    10. Hoekstra, Rutger & van den Bergh, Jeroen C.J.M., 2006. "Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations," Ecological Economics, Elsevier, vol. 59(3), pages 375-393, September.
    11. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry C. Wilting & Aafke M. Schipper & Olga Ivanova & Diana Ivanova & Mark A. J. Huijbregts, 2021. "Subnational greenhouse gas and land‐based biodiversity footprints in the European Union," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 79-94, February.
    2. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    3. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.
    4. López, Xesús Pereira & de la Torre Cuevas, Fernando, 2023. "An alternative for tracing the path between supply and use tables in current and constant prices," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 293-302.
    5. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    6. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    7. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    8. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    9. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    10. Jaime Nieto & Pedro B. Moyano & Diego Moyano & Luis Javier Miguel, 2023. "Is energy intensity a driver of structural change? Empirical evidence from the global economy," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 283-296, February.
    11. Glenn A. Aguilar‐Hernandez & Sebastiaan Deetman & Stefano Merciai & João F. D. Rodrigues & Arnold Tukker, 2021. "Global distribution of material inflows to in‐use stocks in 2011 and its implications for a circularity transition," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1447-1461, December.
    12. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    13. Liz Wachs & Shweta Singh, 2018. "A modular bottom-up approach for constructing physical input–output tables (PIOTs) based on process engineering models," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    14. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Schulte, Patrick, 2015. "Does skill-biased technical change diffuse internationally?," ZEW Discussion Papers 15-088, ZEW - Leibniz Centre for European Economic Research.
    16. Jan Fagerberg & Bengt-Åke Lundvall & Martin Srholec, 2018. "Global Value Chains, National Innovation Systems and Economic Development," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 533-556, July.
    17. Felbermayr Gabriel & Steininger Marina, 2019. "Revisiting the Euro’s Trade Cost and Welfare Effects," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(5-6), pages 917-956, October.
    18. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    19. Enghin Atalay & Ali Hortacsu & Mustafa Runyun & Chad Syverson & Mehmet Fatih Ulu, 2023. "Micro- and Macroeconomic Impacts of a Place-Based Industrial Policy," Working Papers 23-12, Federal Reserve Bank of Philadelphia.
    20. Yuko Imura, 2023. "Reassessing Trade Barriers with Global Production Networks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 77-116, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:1:p:107-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.