IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i1p79-94.html
   My bibliography  Save this article

Subnational greenhouse gas and land‐based biodiversity footprints in the European Union

Author

Listed:
  • Harry C. Wilting
  • Aafke M. Schipper
  • Olga Ivanova
  • Diana Ivanova
  • Mark A. J. Huijbregts

Abstract

Insights into subnational environmental impacts and the underlying drivers are scarce, especially from a consumption‐based perspective. Here, we quantified greenhouse gas (GHG) emissions and land‐based biodiversity losses associated with final consumption in 162 regions in the European Union in 2010. For this purpose, we developed an environmentally extended multi‐regional input–output (MRIO) model with subnational European information on demand, production, and trade structures subdivided into 18 major economic sectors, while accounting for trade outside Europe. We employed subnational data on land use and national data on GHG emissions. Our results revealed within‐country differences in per capita GHG and land‐based biodiversity footprints up to factors of 3.0 and 3.5, respectively, indicating that national footprints may mask considerable subnational variability. The per capita GHG footprint increased with per capita income and income equality, whereas we did not find such responses for the per capita land‐based biodiversity footprint, reflecting that extra income is primarily spent on energy‐intensive activities. Yet, we found a shift from the domestic to the foreign part of the biodiversity footprints with rising population density and income. Because our analysis showed that most regions are already net importers of GHG emissions and biodiversity losses, we conclude that it is increasingly important to address the role of trade in national and regional policies on mitigating GHG emissions and averting further biodiversity losses, both within and outside the region itself. To further increase the policy relevance of subnational footprint analyses, we also recommend the compilation of more detailed subnational MRIO databases including harmonized environmental data.

Suggested Citation

  • Harry C. Wilting & Aafke M. Schipper & Olga Ivanova & Diana Ivanova & Mark A. J. Huijbregts, 2021. "Subnational greenhouse gas and land‐based biodiversity footprints in the European Union," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 79-94, February.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:1:p:79-94
    DOI: 10.1111/jiec.13042
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13042
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    3. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    4. Stefano Merciai & Jannick Schmidt, 2018. "Methodology for the Construction of Global Multi†Regional Hybrid Supply and Use Tables for the EXIOBASE v3 Database," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 516-531, June.
    5. Diana Ivanova & Konstantin Stadler & Kjartan Steen-Olsen & Richard Wood & Gibran Vita & Arnold Tukker & Edgar G. Hertwich, 2016. "Environmental Impact Assessment of Household Consumption," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 526-536, June.
    6. Arnold Tukker & Arjan de Koning & Anne Owen & Stephan Lutter & Martin Bruckner & Stefan Giljum & Konstantin Stadler & Richard Wood & Rutger Hoekstra, 2018. "Towards Robust, Authoritative Assessments of Environmental Impacts Embodied in Trade: Current State and Recommendations," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 585-598, June.
    7. Ana Serrano & Dabo Guan & Rosa Duarte & Jouni Paavola, 2016. "Virtual Water Flows in the EU27: A Consumption-based Approach," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 547-558, June.
    8. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    9. John Barrett & Glen Peters & Thomas Wiedmann & Kate Scott & Manfred Lenzen & Katy Roelich & Corinne Le Qu�r�, 2013. "Consumption-based GHG emission accounting: a UK case study," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 451-470, July.
    10. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    11. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    12. Kjartan Steen-Olsen & Anne Owen & Edgar G. Hertwich & Manfred Lenzen, 2014. "Effects Of Sector Aggregation On Co 2 Multipliers In Multiregional Input-Output Analyses," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 284-302, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Lei & Taghizadeh-Hesary, Farhad & Mohsin, Muhammad, 2023. "Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity," Resources Policy, Elsevier, vol. 82(C).
    2. Ceglar, Andrej & Boldrini, Simone & Lelli, Chiara & Parisi, Laura & Heemskerk, Irene, 2023. "The impact of the euro area economy and banks on biodiversity," Occasional Paper Series 335, European Central Bank.
    3. Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).
    4. Córcoles, Carmen & López, Luis Antonio & Osorio, Pilar & Zafrilla, Jorge, 2024. "The carbon footprint of the empty Castilla-La Mancha," Energy Policy, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    2. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    3. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    4. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    5. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    6. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    7. Gilang Hardadi & Alexander Buchholz & Stefan Pauliuk, 2021. "Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 95-113, February.
    8. Honglin Zhong & Yanxian Li & Jiaying Ding & Benedikt Bruckner & Kuishuang Feng & Laixiang Sun & Christina Prell & Yuli Shan & Klaus Hubacek, 2024. "Global spillover effects of the European Green Deal and plausible mitigation options," Nature Sustainability, Nature, vol. 7(11), pages 1501-1511, November.
    9. Simon Schulte & Arthur Jakobs & Stefan Pauliuk, 2021. "Relaxing the import proportionality assumption in multi-regional input–output modelling," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-21, December.
    10. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    11. Venkata Sai Gargeya Vunnava & Jaewoo Shin & Lan Zhao & Shweta Singh, 2022. "PIOT‐Hub ‐ A collaborative cloud tool for generation of physical input–output tables using mechanistic engineering models," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 107-120, February.
    12. Tobias Nielsen & Nicolai Baumert & Astrid Kander & Magnus Jiborn & Viktoras Kulionis, 2021. "The risk of carbon leakage in global climate agreements," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(2), pages 147-163, June.
    13. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    14. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    15. Dorninger, Christian & Hornborg, Alf & Abson, David J. & von Wehrden, Henrik & Schaffartzik, Anke & Giljum, Stefan & Engler, John-Oliver & Feller, Robert L. & Hubacek, Klaus & Wieland, Hanspeter, 2021. "Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century," Ecological Economics, Elsevier, vol. 179(C).
    16. Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
    17. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    18. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    19. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    20. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:1:p:79-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.