Environmental impact assessment of plasma‐assisted and conventional ammonia synthesis routes
Author
Abstract
Suggested Citation
DOI: 10.1111/jiec.12996
Download full text from publisher
References listed on IDEAS
- Serena Righi & Filippo Baioli & Alessandro Dal Pozzo & Alessandro Tugnoli, 2018. "Integrating Life Cycle Inventory and Process Design Techniques for the Early Estimate of Energy and Material Consumption Data," Energies, MDPI, vol. 11(4), pages 1-23, April.
- Sheetal Gavankar & Sangwon Suh & Arturo A. Keller, 2015. "The Role of Scale and Technology Maturity in Life Cycle Assessment of Emerging Technologies: A Case Study on Carbon Nanotubes," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 51-60, February.
- Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
- Marloes Caduff & Mark A.J. Huijbregts & Annette Koehler & Hans-Jörg Althaus & Stefanie Hellweg, 2014. "Scaling Relationships in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 393-406, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
- Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
- Farrukh, Clare & Holgado, Maria, 2020. "Integrating sustainable value thinking into technology forecasting: A configurable toolset for early stage technology assessment," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
- Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Bergesen, Joseph D. & Suh, Sangwon, 2016. "A framework for technological learning in the supply chain: A case study on CdTe photovoltaics," Applied Energy, Elsevier, vol. 169(C), pages 721-728.
- Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.
- Steffi Weyand & Kotaro Kawajiri & Claudiu Mortan & Liselotte Schebek, 2023. "Scheme for generating upscaling scenarios of emerging functional materials based energy technologies in prospective LCA (UpFunMatLCA)," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 676-692, June.
- Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Serena Righi & Filippo Baioli & Alessandro Dal Pozzo & Alessandro Tugnoli, 2018. "Integrating Life Cycle Inventory and Process Design Techniques for the Early Estimate of Energy and Material Consumption Data," Energies, MDPI, vol. 11(4), pages 1-23, April.
- Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
- Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
- Kjersti Wergeland Krakhella & Marjorie Morales & Robert Bock & Frode Seland & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2020. "Electrodialytic Energy Storage System: Permselectivity, Stack Measurements and Life-Cycle Analysis," Energies, MDPI, vol. 13(5), pages 1-26, March.
- M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
- Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
- Gustavo Ezequiel Martinez & Roel Degens & Gabriela Espadas-Aldana & Daniele Costa & Giuseppe Cardellini, 2024. "Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices," Energies, MDPI, vol. 17(17), pages 1-15, August.
- Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
- Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
- Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:5:p:1171-1185. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.