IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i3p534-547.html
   My bibliography  Save this article

The life cycle carbon balance of selective logging in tropical forests of Costa Rica

Author

Listed:
  • Federico E. Alice‐Guier
  • Frits Mohren
  • Pieter A. Zuidema

Abstract

The effect of logging on atmospheric carbon concentrations remains highly contested, especially in the tropics where it is associated to forest degradation. To contribute to this discussion, we estimated the carbon balance from logging natural tropical forests in Costa Rica through a life cycle accounting approach. Our system included all major life cycle processes at a regional level during one rotation period (15 years). We used mass flow analysis to trace biogenic carbon. Data were gathered from all logging operations in the Costa Rican NW region (107 management plants), a sample of industries transforming wood into final products (20 sawmills), and national reports. We estimated a surplus of −3.06 Mg C ha−1 15 year−1 stored within the system. When accounting for uncertainty and variability in a Monte Carlo analysis, the average balance shifted to −2.19 Mg C ha−1 15 year−1 with a 95% CI of −5.26 to 1.86. This confidence interval reveals probabilities of a net increase in atmospheric carbon due to harvesting although these are smaller than those from a system that acts as a reservoir. Our results provide evidence for the carbon neutrality of bio‐materials obtained from natural forests. We found that anthropogenic reservoirs play a determinant role in delaying carbon emissions and that these may explain differences with previous carbon balance studies on tropical forest management. Therefore, the climate mitigation potential of forest‐derived products is not exclusive to forest management, but measures should be considered throughout the processes of wood transformation, use, and disposal.

Suggested Citation

  • Federico E. Alice‐Guier & Frits Mohren & Pieter A. Zuidema, 2020. "The life cycle carbon balance of selective logging in tropical forests of Costa Rica," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 534-547, June.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:3:p:534-547
    DOI: 10.1111/jiec.12958
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12958
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piponiot, Camille & Derroire, Géraldine & Descroix, Laurent & Mazzei, Lucas & Rutishauser, Ervan & Sist, Plinio & Hérault, Bruno, 2018. "Assessing timber volume recovery after disturbance in tropical forests – A new modelling framework," Ecological Modelling, Elsevier, vol. 384(C), pages 353-369.
    2. Gediminas JasineviÄ ius & Marcus Lindner & Emil Cienciala & Markku Tykkyläinen, 2018. "Carbon Accounting in Harvested Wood Products: Assessment Using Material Flow Analysis Resulting in Larger Pools Compared to the IPCC Default Method," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 121-131, February.
    3. A. Baccini & S. J. Goetz & W. S. Walker & N. T. Laporte & M. Sun & D. Sulla-Menashe & J. Hackler & P. S. A. Beck & R. Dubayah & M. A. Friedl & S. Samanta & R. A. Houghton, 2012. "Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps," Nature Climate Change, Nature, vol. 2(3), pages 182-185, March.
    4. R. A. Houghton & Brett Byers & Alexander A. Nassikas, 2015. "A role for tropical forests in stabilizing atmospheric CO2," Nature Climate Change, Nature, vol. 5(12), pages 1022-1023, December.
    5. Geng, Aixin & Yang, Hongqiang & Chen, Jiaxin & Hong, Yinxing, 2017. "Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 192-200.
    6. R. A. Houghton & D. L. Skole & Carlos A. Nobre & J. L. Hackler & K. T. Lawrence & W H. Chomentowski, 2000. "Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon," Nature, Nature, vol. 403(6767), pages 301-304, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilbert Ahamer, 2022. "Why Biomass Fuels Are Principally Not Carbon Neutral," Energies, MDPI, vol. 15(24), pages 1-39, December.
    2. Mengwan Zhang & Ning Ma & Youneng Yang, 2023. "Carbon Footprint Assessment and Efficiency Measurement of Wood Processing Industry Based on Life Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    3. Bronson W Griscom & Peter W Ellis & Alessandro Baccini & Delon Marthinus & Jeffrey S Evans & Ruslandi, 2016. "Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-25, January.
    4. Numazawa, Camila T.D. & Numazawa, Sueo & Pacca, Sergio & John, Vanderley M., 2017. "Logging residues and CO2 of Brazilian Amazon timber: Two case studies of forest harvesting," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 280-285.
    5. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    7. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    8. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    9. Joseph Mascaro & Gregory P Asner & David E Knapp & Ty Kennedy-Bowdoin & Roberta E Martin & Christopher Anderson & Mark Higgins & K Dana Chadwick, 2014. "A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    10. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    11. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    12. Zepharovich, Elena & Ceddia, M. Graziano & Rist, Stephan, 2021. "Social multi-criteria evaluation of land-use scenarios in the Chaco Salteño: Complementing the three-pillar sustainability approach with environmental justice," Land Use Policy, Elsevier, vol. 101(C).
    13. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    14. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    15. Kim, Do-hun & Sjølie, Hanne K. & Aguilar, Francisco X., 2024. "Psychological distances to climate change and public preferences for biodiversity-augmenting attributes in family-owned production forests," Forest Policy and Economics, Elsevier, vol. 163(C).
    16. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    17. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    18. Elias Hurmekoski & Juulia Suuronen & Lassi Ahlvik & Janni Kunttu & Tanja Myllyviita, 2022. "Substitution impacts of wood‐based textile fibers: Influence of market assumptions," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1564-1577, August.
    19. Murphy, David M. A. & Berazneva, Julia & Lee, David R., 2015. "Fuelwood Source Substitution and Shadow Prices in Western Kenya," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205084, Agricultural and Applied Economics Association.
    20. Araujo, Rafael & Costa, Francisco J M & Sant'Anna, Marcelo, 2020. "Efficient Forestation in the Brazilian Amazon: Evidence from a Dynamic Model," SocArXiv 8yfr7, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:3:p:534-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.