IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i1p178-192.html
   My bibliography  Save this article

Using anticipatory life cycle assessment to enable future sustainable construction

Author

Listed:
  • Verena Göswein
  • Carla Rodrigues
  • José D. Silvestre
  • Fausto Freire
  • Guillaume Habert
  • Jakob König

Abstract

The built environment is the largest single emitter of CO2 and an important consumer of energy. Much research has gone into the improved efficiency of building operation and construction products. Life Cycle Assessment (LCA) is commonly used to assess existing buildings or building products. Classic LCA, however, is not suited for evaluating the environmental performance of developing technologies. A new approach, anticipatory LCA (a‐LCA), promises various advantages and can be used as a design constraint during the product development stage. It helps overcome four challenges: (i) data availability, (ii) stakeholder inclusion, (iii) risk assessment, and (iv) multi‐criteria problems. This article's contribution to the line of research is twofold: first, it adapts the a‐LCA approach for construction‐specific purposes in theoretical terms for the four challenges. Second, it applies the method to an innovative prefabricated modular envelope system, the CleanTechBlock (CTB), focusing on challenge (i). Thirty‐six CTB designs are tested and compared to conventional walls. Inclusion of technology foresight is achieved through structured scenario analysis. Moreover, challenge (iv) is tackled through the analysis of different environmental impact categories, transport‐related impacts, and thickness of the wall assemblies of the CTB. The case study results show that optimized material choice and product design is needed to reach the lowest environmental impact. Methodological findings highlight the importance of context‐specific solutions and the need for benchmarking new products.

Suggested Citation

  • Verena Göswein & Carla Rodrigues & José D. Silvestre & Fausto Freire & Guillaume Habert & Jakob König, 2020. "Using anticipatory life cycle assessment to enable future sustainable construction," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 178-192, February.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:178-192
    DOI: 10.1111/jiec.12916
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12916
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moussavi, S. & Barutha, P. & Dvorak, B., 2023. "Environmental life cycle assessment of a novel offshore wind energy design project: A United States based case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    3. Qiuyu Wang & Zhiqi Gong & Chengkui Liu, 2022. "Risk Network Evaluation of Prefabricated Building Projects in Underdeveloped Areas: A Case Study in Qinghai," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    4. Carla Rodrigues & João Almeida & Maria Inês Santos & Andreia Costa & Sandra Além & Emanuel Rufo & António Tadeu & Fausto Freire, 2021. "Environmental Life-Cycle Assessment of an Innovative Multifunctional Toilet," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Francesca Nocca & Mariarosaria Angrisano, 2022. "The Multidimensional Evaluation of Cultural Heritage Regeneration Projects: A Proposal for Integrating Level(s) Tool—The Case Study of Villa Vannucchi in San Giorgio a Cremano (Italy)," Land, MDPI, vol. 11(9), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:178-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.