IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i4p918-931.html
   My bibliography  Save this article

Bridging the climate mitigation gap with economy‐wide material productivity

Author

Listed:
  • Kate Scott
  • Jannik Giesekam
  • John Barrett
  • Anne Owen

Abstract

Projections of UK greenhouse gas emissions estimate a shortfall in existing and planned climate policies meeting UK climate targets: the UK's mitigation gap. Material and product demand is driving industrial greenhouse gas emissions at a rate greater than carbon intensity improvements in the economy. Evidence shows that products can be produced with fewer carbon intensive inputs and demand for new products can be reduced. The economy‐wide contribution of material productivity and lifestyle changes to bridging the UK's mitigation gap is understudied. We integrate an input‐output framework with econometric analysis and case study evidence to analyse the potential of material productivity to help the UK bridge its anticipated emissions deficits, and the additional effort required to achieve transformative change aligned with 2 and 1.5°C temperature targets. We estimate that the emissions savings from material productivity measures are comparable to those from the Government's planned climate policy package. These additional measures could reduce the UK's anticipated emissions deficit up to 73%. The results demonstrate that material productivity deserves greater consideration in climate policy.

Suggested Citation

  • Kate Scott & Jannik Giesekam & John Barrett & Anne Owen, 2019. "Bridging the climate mitigation gap with economy‐wide material productivity," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 918-931, August.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:4:p:918-931
    DOI: 10.1111/jiec.12831
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12831
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    2. Lucia Mancini & Philip Nuss, 2020. "Responsible Materials Management for a Resource-Efficient and Low-Carbon Society," Resources, MDPI, vol. 9(6), pages 1-14, June.
    3. Richard Wood & Karsten Neuhoff & Dan Moran & Moana Simas & Michael Grubb & Konstantin Stadler, 2020. "The structure, drivers and policy implications of the European carbon footprint," Climate Policy, Taylor & Francis Journals, vol. 20(S1), pages 39-57, April.
    4. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    5. Matilda Axelson & Sebastian Oberthür & Lars J. Nilsson, 2021. "Emission reduction strategies in the EU steel industry: Implications for business model innovation," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 390-402, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:4:p:918-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.